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NONLINEAR HYPERBOLIC WAVES

John K. Hunter Joseph B. Keller

Colorado State University Stanford University

Ft Collins, CO 80524, U.S.A. Stanford, CA 94305, U.S.A.

We develop a formal asymptotic theory for hyperbolic conservation laws with large

amplitude, rapidly varying initial data [1]. For small times, the solution is described

by a system of conservation laws in a single space variable. Shocks form, and the

solution rapidly decays. For larger times, the solution propagates along rays

according to weakly nonlinear geometrical optics. Initial data for the weakly

nonlinear solution is obtained by matching with the long time behavior of the

solution to the conservation laws in one space variable.

Let u(x,t;() be a solution of the strictly hyperbolic, genuinely nonlinear system of

conservation laws,
n19t u + E oxfi(u ) = 0, fi : I ,_ IR",,

(1) 1~

u(x,O;f) = Uo[X,-l1(x)1

where uo(x,ii) has compact support in q. We shall describe the asymptotic behavior

of u as c -4 0. For short times, of the order c,

u(x,t;f) ~ v[x,'f- 1 I(x),-ltj as - 0,

where v(x,q,r) satisfies
n

(Trv + 0g(x,v) = 0, g(x,v) := E 1 x i T(x) fi(v),(2)

v(xii~, =0)

Equation (2) is a system of conservation laws in one space dimension, in which x
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occurs as a parameter.

For times of the order one, u(x,t;c) is asymptotic to a weakly nonlinear

geometrical optics solution (21, which has the form
m1

(3) u(x,t;c) ()ila -1x,t, " 0(x,t)]R(x,t) as c -4 0.

In (3), the wave amplitudes aj, the phase functions 0. and the eigenvectors R. satisfy

the equations derived in [I]. In particular, the wave amplitudes solve inviscid

Burgers' equations of the form,

[a + Cj(xt).Vlaj + Mj(xt) 98[aj 2] + Qj(xt)aj = 0.

These equations must be supplemented by initial values of the a. and qj, and by

specification of the amplitude parameter 6, which are obtained by matching (3) as

t -4 0+, with the solution of (2) as r -4 +®.

The solution of (2) approaches a sul)erposition of N-waves as r -4 +00 [3].

Matching implies that

6 - 1/2

j(x,0) = P(x), OtOj(x,O) =-Aj(x),

where Aj(x) is the jth eigenvalue of Dvg(x,v). Also, as t -4 0+,

aj(x,t,o) Mj(x,0)-t-1 0, if -[-2pj(x)t1l/2 < 0 < [2qj(x)t]1/2,

aj(x,t,e) 0, otherwise.

Here, Mj is a nonlinear self interaction coefficient (which is nonzero for genuinely

nonlinear waves), and pj and qj are the N-wave invariants of the jth N-wave in the

large time asymptotic solution of (2).

A similar theory is possible when u0 (x,j) is periodic in ij, but it is only

complete for a scalar equation and 2 x 2 systems. Tis is for two reasons: the

large time behavior of periodic solutions to general systems of conservation laws in

one space variable is not known; and there are difficulties in the weakly nonlinear
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theory for resonantly interacting periodic waves.

References

[11 J. K. Hunter and J. B. Keller, "Nonlinear hyperbolic waves", to appear in Proc.
Roy. Soc. A.

[2] J. K. Hunter and J. B. Keller, "Weakly nonlinear, high-frequency waves",
Comm. Pure AppL. Math. 36 (1983), 547-569.

[31 T. P. Liu, "Decay to N-waves of solutions of general systems of nonlinear
hyperbolic conservation laws", Comm. Pure. App. Math. 30 (1977), 585-610.

A.



Numerical Solution of Flow Equations

An Aircraft Designer's View
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Today the most accurate and cost effective industrial codes used for aircraft
design are based on full potential equations coupled with boundary layer
equations. But these are not capable to solve complicated three-dimensional
problems of vortical flows and shocks. On the other hand Euler and Navier-
Stokes codes are too expensive and not sufficiently accurate for design pur-
poses, especially towards drag and interference prediction. The reasons for
these deficiencies are Investigated and a way to overcome them by future
developments is demonstrated.
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funly of robability mosrew vhich operae in the pls piaum, and that the wtong
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Large Time Step Glimm's Scheme for Hyperbolic Conservation Laws

Wang Jinghua

Institute of Systems Science
Academia Sinica

Beijing
China

We are concerned with systems of conservation laws of the form

(1) ut+f(u)=0 -- oo<X<oo , t>0

with initial condition

(2) u(x,0) = uo(X)

Here u(x,t) = (u 1(x,t),... ,u'(x,t)) and f(u(x,t)) = (f 1(u(x,t)),. ,fm'(u(x,t))) is a smooth
mapping from a region f9 of R m to Rm . We assume that the system (1) is strictly hyperbolic,
i.e. the matrix 2 has real and distinct eigenvalues.

Solution to I.V.P. (1), (2) may develop discontinuities even when the initial data are smooth.
Therefore we seek weak solutions to I.V.P. (1), (2), i.e., solutions u(x, t) which satisfy

j j (u$, + f(u)b$,) dx dt + j uo(x)f(x,0) dx = 0

for all C1 test functions 1(x,t), vanishing for Jxi + t large.
Glimm's scheme, introduced in his celebrated paper [1], is an effective method for calculating

discontinous solutions of systems of conservation laws. The main advantages of the scheme
for numerical calculation is the sharp resolution of discontinuities and absence of over- and
undershoots. A drawback of the scheme is to solve many Riemann problems. This is a time
consuming procedure. Motivated by Le Veque's work [3], we introduce two types of large time
step generalization of Glimm's scheme, [4], by linear superposition of conserved quantities and
corresponding Riemann invariants respectively. Here we give a description of first one as follows.

We discretize R x (0, oo) by spatial mesh length b and time mesh length r and allowing the
Courant number c to be arbitrary (fixed) constant, i.e.,

- 1 = c < N

where IAI is the maximum wave speed. Then for a random sequense {ai} in [0,1) , assuming
that u(x,t,6), approximate solution to I.V.P. (1), (2) has been determined for t < t, = nr, then
we define u(x,tn,6) = UA:,n = u(xk + acrbtn - 6) for x E Ik = [xk,x k+1), where xk = k6. Let
Uk,(z,t) be solution of Riemann problem

U(Z,tn) - l,,, , X < Zk
• Uk,n  X> XkI (1)



We set u(z,t,b) in the stripe S. = {(z,t), t, < t<t,+I} as

(3) U(*,t96) = U(2,t 3,6) + E(Ui(zt) - Ui(zt.)) , t) E) 6
i

The above procedure may proceed for all t > 0 provided we have suitable bound on u(z, t, 6).
To initiate the scheme, at n = 0, we set

(z,O,6) = UO(z)
These are at most 2N non-zero terms in the sum of right hand side of (3). In particular this
large time generalization of Glimm's scheme, abbreviated as L.T.S. Glimm's scheme, reduces to
Glimm's scheme when c < 1/2.

We prove 141, the consistency of the L.T.S. Glimm's scheme, i.e., assume that each choice
of the random sequence {a} yield a family {u(z,t,6), 0 < 6 < 6o} of approximate solution
which are defined for t > 0 and T.V. u(., t, 6) are uniformly bounded in 6 and t. Then there
exists a sequence 6, --+ 0 such that

u(ztf) -- u(zt) , 6, -+ 0

and u(x, t, 6) is the weak solution to I.V.P. (1), (2).
. We also prove in [4] that the L.T.S. Glimm's scheme is total variation diminishing for scalar

conservation laws. Therefore by consistency of the scheme it follows that the weak solution to
I.V.P. (1), (2) can be obtained as limit of sequence of the approximate solution u(x,t,6) for
almost all choices of random sequence {ai) as the mesh is refined.

In (41, for general systems, if we assume the system is genuinely nonlinear and T.V. uo(.)
is sufficiently small, then T.V. u(.,t,6) is bounded uniformly in 6 and t > 0. Thus the weak
solution to I.V.P (1), (2) also can be obtained by L.T.S. Glimm's scheme. This means that the
main theorem in Glimm's work [1] remains true for L.T.S. Glimm's scheme.

Harten and Lax [2] modify Glimm's scheme by replacing the exact solution of Riemann
problem with an appropriate finite difference approximation and by building approximate so-
lutions on a moving grid. Their modification is computationally more efficient and easier to
extend to more general situations. In (5], we extend the random choice finite difference scheme
by Harten and Lax to a large time step version and we prove the consistency of the scheme and
the scheme is total variation diminishing for scalar conservation laws. We also make study on
entropy condition for it.
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Sulmmar-y

Today the most accurate and cost effective industrial codes used for
aircraft design are based on full potential equations coupled with
boundary layer equations. But these are not capable to solve compli-
cated three-dimensional problems of vortical flows and shocks. On the
other hand Euler and Navier-Stokes codes are too expensive and not
sufficiently accurate for design purposes, especially towards drag and
interference prediction. The reasons for these deficiencies are
Investigated and a way to overcome them by future developments is
demonstrated.

Nomnclature

a speed of sound p pressure
ao stagnation speed of sound R special gas constant
dA element of surface aV s specific entropy
div n. div in plane normal to p t time
Dm. wave operator at Mach cone T temperature

wave operator at path line r* space-time velocity, stat. -

Q. X~ space velocity
D substantial derivative vn normal comp. of velocity

Vt tangential comp. of velocity

aV surface of V control volume
e specific Inner energy v ratio of specific heats
F flux X Riemann invariant
h specific stagnation enthalpy p density

space-time like normal vector
A space like part of j

Deficiencies of Modern Nuerical Methods

In the field of aerodynamic design of modern aircraft, especially transonic
transport aircraft, numerical methods became one of the most important
design tools. The mayority of the codes used nowadays heavily relies on the
experience with the elliptic subsonic potential equation. To enable the
solution of transonic problems with supersonic pockets the necessary
numerical conditions for hyperbolic flows were introduced. And yet today the
most accurate codes for drag prediction are full potential codes coupled
with a boundary layer method. Especially at the points indicated in Fig. 1
the viscous effects strongly influence the solution: shock/boundary layer
interaction, rear loaded profiles, transonic wakes. An H-type grid enables
an accurate coupling of the inviscid and viscous solution including the wake
and an easy capture of normal shocks [3].

• Department of Theoretical Aerodynamics
MBB-UT, TE 212, HOnefeldstr. 1-5, 0-2800 Bremen 1 1/12



Fig. 1: Transonic airfoil calculation

These codes are restricted to two-dimensional or at least nearly
two-dimensional flow problems because they cannot capture the typical
three-dimensional effects shown in Fig. 2: unknown three-dimensional shocks,
free vortices, wake interferencies, nacelle and jet interferencies,
rotational flow fields.

Fi., 2L Severe 3D-problems for transport aircraft

For aircraft of small aspect ratio (Fig. 3) the old methods are completely
insufficient: the flow field is dominated by vortex systems; at higher Mach
numbers the strong entropy gradients do not allow a potential approximation.

2/12



Fig. 3: Severe 3D-problems for reentry vehicle

On the other hand there exist a lot of Euler and Navier-Stokes (NS) codes
which should be able to solve these problems. The following figures show
some typical 3D-results of two modern Euler codes representing the state of
the art. Fig. 4 shows total pressure losses on a midwing airfoil.

6-

0

0

CD 0.2 0.4/ 0.-?

Fig, 4: Total pressure loss on midwing airfoil
(Solutions of two different 30 Euler codes)

Due to smaring and wiggles shock location and strength cannot be detemined
accurately. At the leading edge spurious pressure raises resp. entropy
losses and other numerical errors occur; the trailing edge solution shws
similar errors.
Invisctd wave and induced drag has to be detemined by integration in the
direction perpendicular to the free stream.
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-0.10 0. 
-. 0.0 0.0 0.0 0.-0

I

a

3D-EULER MACH- 0.7800 ALPHR- 2.2400

Fig. 5: Inviscid drag by pressure integration
(Solutions of two different 3D Euler codes)

Inviscid drag is given as the small difference of the large areas enclosed
by the pressure curves; errors mainly result from the wrong pressure
computation at leading and trailing edges.
Another possibility of inviscid drag calculation is to calculate wave drag
by entropy rise at the shock and induced drag in the Treffz plane. This
method requires accurate shock determination and vorticity transport (Fig.
6, 7); both are not sufficiently guaranteed by current codes.

Fg6eTotal pressure loss, streamise direction(3D Euler solution)

4/12



Fig. 7: Absolute value of vorticity, streanwise direction,
(3D Euler solution)

Other very important problems to be solved are the interferencies caused by
vortex systems. Euler and NS solvers should be able to capture this problem.

Fil. 8: Total pressure loss, wake behind wing
(3D Euler solution)

Fig. 9: Absolute value of vorticity, wake behind wing,
(3D Euler solution) S/12



Figs. 8/9 should show only the inviscid wake of an Euler solution. Partly
vorticity occurs at the physically known places. But obviously, additional
vorticity is generated by grid properties, is smeared out, and in the
downstream direction the vorticity content [2] diminishes rapidly. So these
codes are not yet helpful to solve this problem with the accuracy needed for
aircraft design.

Looking at computing costs the Euler (and NS) codes are surprisingly
expensive: This is mainly due to the fact that today's Euler codes need grid
sizes comparable to those used with full potential codes. But to get the
requested solution values (e.g. velocity or pressure) the potential function
# has to be differentiated numerically with one order loss of accuray. In
Euler equations, the requested values are directly obtained as solutions and
therefore a much coarser mesh should give the same accuracy as for potential
flow models. Moreover - because of the necessary degree of continuity -
additional difficulties should be expected for full potential solvers in
regions of strongly varying solutions. Therefore important accuracy and cost
improvements of future Euler (and NS) codes can be expected.

The examples demonstrated here are Euler solutions. Real flow is viscous; so
some people think that the difficulties will be overcome by the solution of
the HS equations. But since the errors shown above are errors of the
solution method rather than the Euler equations, they will not be overcome
by using other equations but by other algorithms. Especially for high
Reynolds number flows the Euler terms remain very important in the NS
equations; they completely describe the outer flow field away from body
surfaces or wakes. So a NS solution will only be possible with an accurate
solution of the intrinsic Euler part. And as the important hyperbolic part
of the flow equations are the Euler equations, their numerical solution by
field methods will be discussed here.

It is well known, that the errors in numerical solutions are generated by
numerical smearing, amplification and artificial damping, but it is diffi-
cult to localize the hidden sources of these effects. We will try to identi-
fy some of them and to show possibilities to overcome them. The presented
facts are all known, but not yet respected in many numerical methods.

The construction of numerical field methods is done in five steps:
- Selection and analysis of the governing equations,
- Selection of a point distribution or grid to represent the flow field,
- Approximation of solution values between grid points,
- Formulation of the boundary conditions defining the special problem,
- Mathematical solution algorithm.

In the next sections only the first three points are discussed for the Euler

equations as an example of systems of nonlinear hyperbolic equations.

Governing Eauations

The well known Euler equations are

C +y dvx y + di v () - 0

N + gradp -0 (1)

E -AL +pdiv X S _ S. 4 - ,0
Dt Dt t - 'Dt

6/12



They have to be complemented by two equations describing the state of the
gas.

A system of hyperbolic differential equations has a set of real directions
with undefined derivatives. For the Euler equations (1) these directions are
all the directions gk normal to the path lines and the directions normal to
the Mach cone defined by the characteristic direction conditions

for the path line: -. * a 0
AO (2)

for the Mach cone: v* j. - -a

All solutions of hyperbolic systems, except the trivial ones, are defined by
Jumps of (sometimes higher order) derivatives. The possible discontinuities
in the shock free region are (depending on the selected set of dependant
variables) e.g.

across the path line: variables s,p , T, a, (h.), v, (3)
across the Mach cone: 1. derivatives of p, (.a) .

In special cases the dependant variables themselves are discontinuous:

across wakes: all variables except p, Va,
(wakes consist of path lines)

(4)
across shocks: all variables except y.

The path line and wake discontinuities are connected with vortices and occur
even in steady subsonic flow.

In contrast to elliptic problems, where the polynomial order of the Taylor
approximation is a quality measure for the discretization, for hyperbolic
problems this is only true for regions with very smooth solutions. For the
physically more interesting zones it is important to take care of the
different kinds of discontinuities, because the solution cannot be expanded
into Taylor series.

Corresponding to the directions le normal to possible Jumps there exist the
directions of wave propagation with the associated wave operators

path line v* : :. :- t + (X'grad)OP. at (5)~ra)

Mach cone r + a.n : I :" + a (grad).

The continuous part of the solution is defined by the set of compatibility
conditions of characteristics theory, e.g. (depending on the selected set of
dependant variables)

along path line: E Dps - 0,
- -I v.gradp,

N DP(f) 1W(6)

along Mach cone: D,4( ' ) +  iD p + a dim % 0

(d iv. y,: div X taken in the plane normal to 3)
I ... 7/12



These conditions are special combinations of the governing equations which
are valid everywhere except across shocks and wakes. But only in the
directions of the corresponding characteristics they describe continuous
wave propagation although continuity is not required for each single term.

Along the path line entropy and stagnation enthalpy are convected without
any continuity required in the transverse direction, even for subsonic flow.
For simulation of vortical flows the correct calculation of vorticity trans-
port is very iortant. It is described indirectly by transport equations
along path lines, because Crocco's theorem

x curlx - -Tgrads+gradh. + D (7)

defines vorticity by (mainly transverse) differentiation of entropy and
stagnation enthalpy.

Important for numerical schemes is, that the hyperbolic solution is
exclusively defined by derivative jumps across the characteristics and in
certain cases as jumps of the solutions themselves, i.e. at wakes and shocks
in the Euler equations.

Referring to the corresponding surface integral formulation instead of the
differential equations,

-OMN
E(U).n dA = 0

aV

Fig. 10: Finite volume

C a dV - dA

V ft ) dv - - I (v-) + p n] dA (8)
VV

2
Vfc-[(e+-'-)]dV - -9[(e+V + -)(v.n)] dA

it is possible to capture all discontinuities within one cell for one-
dimensional problems. The reason is that one can calculate the fluxes of the
unknown solutions instead of the unknown solutions themselves. But this
normally fails in multidimensional cases because the fluxes are tensors of
one degree higher than the unknowns. For multidimensional problems it is
impossible to get a sufficient number of equations for a direct solution of [

8/12
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the unknown fluxes. Therefore the fluxes are computed by integrating over
the boundary where their values have to be calculated from a usual set of
variables. But the values of these variables are only known at distinct
points and not at the whole boundary. This must be overcome by interpolation
assumptions which often are inconsistent with the discontinuities. Therefore
a combination with other techniques is recommended which will be described
later.

To achieve good numerical properties the selection of unknowns has a strong
influence. For the Euler equations the so-called conservative variables
yield shock capturing capability to finite difference schemes, but are
normally working well only for one-dimensional cases. For finite volume
schemes based on the boundary integral equations (8) instead of the diffe-
rential equations, it is not necessary to use the conservative variables for
shock capturing. Here the only important condition is, that the equations do
not contain production terms.

Using the conservative variables or primitive variables the set of diffe-
rential equations is strongly coupled. For numerical reasons and for con-
sistency it is desirable to decouple the system of equations. This is at
least partly possible by using an different set of variables. A complete
decoupling is provided by Riemann invariants if they exist; unfortunately
they usually do not exist. But often it is possible to construct a system of
equations with weaker coupling and weaker nonlinearities, using the know-
ledge of Riemann properties of simpler cases. So choosing velocity, speed of
sound and entropy as variables leads to a set of only mildly coupled and
nearly linear compatibility conditions.

along path line: E DP s - 0

transi ent)DP (Y) - v.[T grad s grad (a2)]

TND (a!)0  (a) Al~-)
~quasi stati' 5t at(9

along Mach cone: DM(-2h a +v.n) a 0 s - adiv .
M M rR M

Wave transportation is described by the wave operators 0. The nonlinearity
is restricted to the determination of the differential operator's characte-
ristic direction and the right hand terms. If we locally combine the wave
variables velocity and speed of sound for each grid plane to plane Riemann
invariants [6], as proposed by Moretti [4],

(n) a + (v -n) n j12  (10)

we get the weakest possible coupling of the compatibility equations. As well
known, for isentropic plane waves the equations are completely decoupled.
This set, however, has no shock capturing capability.

Selection of l~resentative Points

In most numerical field methods the solution field is represented by a
distinct number of grid points. Between the grid points the solution values
are distributed by some kind of interpolation. Normally these interpolation
functions are defined locally, changing definition at grid lines. Therefore
grid lines introduce numerical discontinuities in the derivatives.

9/12



Wave directions

, Grid lines

Fig. 11: Numerical grid

To obtain the best possible results the discontinuities generated by grid
lines should coincide with the physical discontinuities, or at least with
the most Important physical discontinuities. Otherwise at each grid line the
discontinuities will be redistributed and thus numerically dispersed.

For the Euler equations the most important discontinuities are:
- At shocks: shocks and path lines,
- In nonisontroptc' shock-free regions: path lines and characteristics,
especially Omain characteristicsO (The "main characteristic" is the
downstream characteristic in the plane spanned by the boundary normal
vector and the velocity vector.),

- In the isentropic rgion: characteristics, most important themain characteristics",
- Steady subsonic vortex flow: path lines which here are stream lines.

It is not easy to fulfill this demand on grid construction, but it is the
only way to get accurate solutions with a restricted number of grid points.

Wave direction g1

Wave direction 020

Fi.g, 2: Example of a physically motivated numerical grid

10/12



ADoroximation of Solution Values Between Grid Points

Most numerical field methods need some kind of solution distribution between
grid points. As mentioned above, piecewise defined functions introduce
numerical discontinuities. These discontinuities are generated along grid
lines. If the grid lines do not coincide with the characteristics, part of
the information transport changes direction from that of the characteristics
to that of the grid line direction due to the redistribution of disconti-
nuities. This produces numerical dispersion.

On the other hand, the interpolation functions often must be continuous
across grid lines especially for difference and higher order schemes. So
continuity is introduced numerically whereas physics can be discontinuous.
This smears out solutions, amplifies disturbances and produces the well
known wiggles [5].

Normally the interpolation of the different variables between the grid
points is treated independent from each other, e.g. linear or quadratic for
density, momentum and energy. But the equations are strongly coupled as well
as the physical distributions of values. This becomes more obvious in the
postprocessing, when other values like pressure, entropy or stagnation
pressure are calculated. In the zones of strong gradients or even strongly
varying gradients, the solution is affected by by the inconsistency of the
interpolation. A subsequent computation, especially of sensitive functions
as pressure, entropy or stagnation pressure, amplifies these errors due to
the nonlinear combination of inconsistent values; spurious entropy often
disappearing further downstream is generated. Moreover truncation errors
increase with nonlinearity and stronger coupling of equations. So it becomes
impossible to accurately calculate wave or induced drag by pressure inte-
gration, because the most important parts are the nose and trailing edge
regions, both with strongly varying gradients producing large errors due to
inconsistency and truncation errors.

Reauirements for Numerical Field Nethods

Most numerical schemes stay in the tradition of elliptic solvers or one-
dimensional approximations, which are not compatible with hyperbolic pro-
blems describing three-dimensional wave propagation and the corresponding
discontinuities. An accurate numerical scheme must be properly modelt.
Therefore physical and numerical discontinuities should coincide as much as
possible. The most convenient way is to select characteristic directions for
grid construction, as the Nassau construction [6] for two independent and
two dependent variables. But for more than two variables it is necessary to
select the most important directions. These wave and discontinuity lines
transport the main information and the strongest discontinuities. When they
cross over with grid lines, the information must be redistributed; physical
discontinuities are smeared out and new numerical discontinuities are
generated.

From the aircraft designer's view, a combination with a viscous solution is
absolutely necessary. It is facilitated by the selection of grids well
adapted to path or stream lines. To facilitate code construction, stream
line adaption can be used as a construction principle of the code itself
[I].

To achieve accurate solutions the scheme should be of second order in smooth
regions, but at physical discontinuities it should introduce as little
numerical smoothness as possible. Therefore interpolation or distribution
functions should be restricted to one mesh or cell surface. Then numerical
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inaccuracies introduced by approximation are not amplified and can be
transported along the grid lines. If the grid lines coincide with a wave
propagation direction, all the resp. approximation errors remain confined
within the neighboring grid lines, with no further dispersion. A realization
seems possible, for example, with characteristics oriented schemes or node
oriented finite volume schemes using physically motivated grids.

To overcome the difficulties with inconsistent interpolation and truncation
errors, it is possible to use a set of variables better decoupling the
equations. These variable sets normally have no shock capturing capability.
So they can only be used in a nearly converged state to improve accuracy; or
shock fitting must be performed. Another possibility is to use better
interpolation functions, based on local approximations of the flow field,
e.g. based on a locally linearized potential solution combined with a
vorticity approximation given by the entropy distribution.

The methods mentioned above will give the possibility of cost effective and
accurate solutions. But programing work will be more arduous, especially
when versatility is to be maintained. At comparable accuracy for Euler codes
the goal is to achieve

- computing times in the order of full potential codes,

- with coarse grids as known from the method of characteristics.
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The decay of solutions to the equations of nonisentropic hydrodynamic flow

s t 4

Prof. Hans-Dieter Alber
Hathematisches Institut A
der Universitat Stuttgart
Pfaffenwaldring 67

7000 Stuttgart 80

We study the initial value problem for the hydrodynamic equations of

one-dimensional, compressible flow, prove that a global solution exists for

initial values with small variation, and use this result to investigate the

asymptotic behaviour of the solution for large times. Our main objective is to

study the decay of the solution to initial values without compact support.

The initial value problem is given by the equations

(1) et + (ev)X = 0

(2) (ev)t + (ev')x + P= 0

(3) e(- v* + e))t + (ev(-! v' + e + _ p)). = 0
2 e

and the initial conditions

(4) e(x,O) = e(x), v(x,O) = v(x), e(x,O) = e(x)

for x a R and t k 0. e(x,t), v(x,t), e(x,t), respectively, are the density, the

velocity, and the initial energy of the medium at the point x at time t, and

p = p(e,e) is the pressure. We assume that the medium is a polytropic gas,

that is an ideal gas for which e is simply proportional to the temperature T.

From the equation of state for an ideal gas we therefore obtain

(5) p (7-1) ee

with a constant 7 1. We note that the entropy S is given by

(6) S(e,v,e) cv *n (-e-) + So

with constants c,, So.

It is well known that global solutions exist to this problem if the variation

of the initial values is sufficiently small. T.P. Liu proved In (21 for the

equations of non-isentropic flow in the representation of Lagrange that a

global solution exists If the vnrintion of the Initial data is bundod by c/(i-1}.

In (41 he studied the asymptotic behaviour of solutions to general

conservation laws including the case where some of the fields are linearly

• st, - .,._..1
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degenerate, if the initial data are constant on intervals (--,a) and (b,-). It is

proved that the genuinly nonlinear fields decay at the rate t- '/ 2 to the

constant state if the initial data have equal constant values on the intervals

(--,a) and (b,-). Moreover, it is shown that in the LI-norm the genuinly

nonlinear fields tend to N-waves. In [33 it is shown that the linearly

degenerate fields converge to a constante state for general initial data with

sufficiently small variation. Our aim is to derive decay estimates for the

solution if the initial data (V,v,p) with p (7-l)e e have sufficiently small

variation and satisfy

lim (e(x), v(x), p(x)) = li (e(x), v(x), p(x ) (eo, vo, po)
X-*-- X-++a

(7)- 
- -TV((e,v,p) I (--,-a] U [a,-)) S C -0

for positive constants C,P, and all a > 0. To do this we first use the

difference scheme introduced in Il] to prove the following global existence

result:

Theorem 1: Let a compact subset K c R+ x R x R+ be given such that for all

u, = (ei,vt,e 1), u 2 
= (e2,v2,e2) e K the inequality

Iv,-v,1 < 2(7_- ) (e% + e%)
71 1 2

holds. Then there exist constants Cj,C 2 ) 0 such that to all initial data

U ,v, : 4 K with

TV(u) S C,

there exists a weak solution u = (e,v,'e) :R x H+ 4 R+ x IR x R+ of (1) - (5)

satisfying the entropy condition and

TV(u(.,t)) S C2 TV(u).

Here the total variation is understood in a generalized sense. A wca k

solution u = (e,v,e) is said to satisfy the entropy condition if

at(es(u)) + ax(evS(u)) a 0

holds in the distributional sense for the entropy S defined in (6). To prove

this theorem we construct a sequence of approximate solutions to (1) - (5),

which consist out of solutions of Riemann problems, and prove that the total

variation of these approximate solutions is uniformly bounded. Then we can

select a subsequende converging to a weak solution of (1) - (5). By studying

the asymptotic behaviour of the approximate solutions we prove the following

theorem:

...- - .... .... .... ... . .
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Theorem 2: Let K be defined as in theorem 1. Then to all E (1 tert- exist

constants CI,C2 0 such that to all initial data u = (e,v,e) :R -4 K satis-

fying (7) and TV(u) i C1 there exists a weak solution u(e,v,e) of (]) -. (5),

which fulfills the entropy condition and

sup (Iv(x,t)-vol + ip(x,t) -Po[) S q(t,flc)
xeR(8) XE

TV(v(.,t), p(.,t)) 4 q(t;Pt),

where

4- 8

C2 t 2+p , 0 < 2

q(t;p,e) =-

Ct <

with p(x,t) = (7-1) e(x,t) e(x,t).

Again, the total variation is meant in a generalized sense. This result

means that the genuinly nonlinear fields in the solution decay with the rate

given in (8). However, the best decay rate we get is t0", which shows that

our estimates are not optimal, because the decay rate for initial data with

compact support is t - %, as we already mentioned above.
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A HYPERBOLIC ( GENERALIZED ) FLUID MODEL FOR

RELATIVISTIC ELECTRON BEAMS.

A.M. Anile and S. Pennisi
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95125 Catania (Italy)

Relativistic intense charged particle beams are of great interest
in several areas of plasma physics and technology (e.g. free-
electron lasers) [11.
A fundamental description of these beams is usually based upon
the Vlasov-Boltzmann equation. Calculations for specific
situations are then performed by using numerical simulation
techniques. A kinetic approach , however , has some drawbacks
In particular , within a kinetic framework , the actual
calculation of equilibrium configuraticons in an arbitrary
geometry is time consuming and very difficult. Furthermore a
stability analysis of such equilibrium configurations is an
almost impossible task except in very special cases. These
drawbacks could be avoided , at least in part , by adopting a
fluid model . Obviously a fluid model canrnot provide an accurate
microscopic description but could be adequate if one is mainly
interested in the gross fearures of a configuration.
Relativistic fluid models can be constructed by considering the
moment equations arising from the relativistic Vlasov equation
and adopting a suitable closure approximation. For particle beams
the closure approximation must be based on the assumption that
the particle distribution function represents a warm fluid , i.e.
the dispersion of the velocity about the mean is small. Based on
this approximation models have been proposed by Siambis [2].
Newcomb E31 *Amendt and Weitzner (4] . The latter . accordinQ to
our opinion , is the most satisfactory because it is fully
covariant and complete (i.e. they provide a minimal set of field
equations). The present work is based on the Amendt and Weitzner
model and we believe that it represents a considerable
improvement upon theirs. The Amendt and Weitzner relativistic
covariant warm fluid model could be improved significantly in two
points. The first point is related to the constraint equation-

* which must be satisfied by the moments and which arise from the
*fact that the moments arise from a distributiopn function. In the

Amendt and Weitzner model these constraints are satisfied only
approximately . The second point is that the Amendt and Weitzner
model can be shown to lead to a hyperbolic system but it is not
known whether such a system is equivalent to a symmetric one (for
symmetric hyperbolic systems one has a much more satisfactory
mathematical theory (5] ).
In this paper we present a fluid model which solves the above
inconveniences of the Amendt and Weitzner one. More precisely

L 4



for our model the constraint equations are satisfied exac tly and
furthermore our model leads to a sy!nLn~~i hyRebtlic system.
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The purpose of the paper is to presenita synithesis (if a set of revenit (essentially Uillpiil)lishec(l) studies
related to the design of multj-(litneusioInaI ion-oscillatory schemes. wit-i emlphasis Olt those which apply to
non-structured finite-element simnplcial niesl,.s (triangles. tetrahiedra). While tihe direct utilizationi of 1-D
concepts wmay produce robust andl accurate schiiiivs whmen ap~pliedl to non-(htstorted structuredl mieshecs, it
cannot when non-structured triangulatiois are Jo be uised.

The subject of the paper is to study the aolmptatiom of the so-called TVI) methods to the above context.
TVD methods have been derived for the design of Iybritl first-order/second-order accurate schemes which
p~resent in simplifiedl cases monotonicity properties (see, for exaunpie. tihe review [11).

A various co,, -ction of first-order accurate scmeines (-all h~e used. they are dlerivedl from anl artificial
viscosity miodel or from an approximate flienimn solver.

However, the main featoure in the design i% the choice of the second-order accurate schemne. this choice
canl rely either onl central differencing or onl unpwind differemicing.

CENTRAL DIFFERENCING
For central (lifferencing, our work [21 extends S.Davis* ap~proachl (see also [8.91). Two main features will

be (discussed:
-thne viscosity model can be uniform,. so that thle first-order schemie is of Lax-Friedrichs type: we discuss

its method of construction (see also [1]) .another model call be derived fromn a flux-splitting : Osher's
-iplit (mug has been used with sone. success.

-the construction of symmetric limiters (atfter [121): it is geonietrically bused onl segments. i.e. triangle
idsin 2-D. edges in 3-D, joining adjacent nmodes .this enables omue to derive -onservative schenies. Four

* values of a sensor are then to be compunted in order to perform a 1-D liimiitig process. these values- are
obtained using a local representation of thme flow Va~rialbles. dlerived from a previous FEM-MUSCL schene
introduced in [61.

UPWIND SCHEMES
In the case of upwind differencimig. the MUSCL approach of van Leer [IlI is adapted ,the question

whether the limiting step has to be donse sejuarately in each dlirection or as a mnultidimuensional device is
studied imore precisely:

- 1-D limiting has been used in a scheme involving fully upwind derivatives together with central ones
it p~rodulced nice results for the simulation of 3-D reentry supersonic flows (101.

- 2-D limiting proved also to be a very robust approach when limitation is applied to each elemcent(not
publishted).



ANALYSIS
TIhe :oilmunicatijon will involve

-a theoretical discussion of two scalar linear iiiltidiiiieuisional miodels, namiely the adveclion tiiodl

(1) "'t + V .9rndlu' )

and~ the linear conservation law

(2) t + di'( V it) 0

Then a nunierical scheme will be declared nionotoniity pre's'vi-ing if it, satisfies the Maxiniui Priniciple
(case of (1)) or preserves the positiveness oif soluitionis (case of (2)). ]it the conitext, of triangles, the study is
a sequel of the work done by Blmh and 'lahata 131: several Waiys to ex teind their first-order accurate 5(lieiinv'
to rVD qluasi so-coiid-order accurate schemnes will he presenud.

- a1 presentation of the various Eider schemes
- at com1parison of the schemnes with 2-D typ'ical calcilatioss a r'cenit GAMM N workshop 1131 presented

WWvRI~a test cames (airfoil. bliut body flows)thatart. not. easy 1(1 calculate from tbe poit, of view of robustiloss
and/or acc iiraCy.

-afew 3-D calculations utsing some among thei be t schiemies p~resen'tedl.

CONCLUSION
Several Schines that we d esigited are intIerd-dIi ng from int( poinit if view of roisn e shss andl ace ijr~icy. At

the piresent time, upwind TVI) schemiles seem11 to 1-oe more acciurate. because the limiiters introduice less first -
ordler accu rate niumerical viscosity. However. sinlce purely cciittral iiill'irelci ug schemes involve no imme irical
viscosity, rVD schninies relying onl these schemiles have at chmnce to pierforml well in the fuiture, when. for
examplde. tHey are included in -a Navier-Stokes solver.
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Construction of a high shock-resolution central-differencing scheme Mach-8
a, 2-D flow past a cylinder:

a. First-order scheme (Osher's splitting)

- b. TVD scheme, relying on the above scheme and a Rtichtmyer-Galerkiii one.

The shock numerical thickness is in accordance with theoretical predictions.

Construction of a high shock- resolution upwind scheme; Mach-S 2-D flow past
a cylinder

IMUSCL-FEM scheme relying on Osher's splitting and on 2-D element-wise 0

limiters.

MAC3-LIN4ES 141, = KZOO MAX 1 .70 DLT,'= 0.020 \

/ s--- MIN. 0=.0 14A-'C 3.000 OLTA..)

3-1) calculation of a flow past a wing (Mach at infinity =1.5), p, iformed by
applying a MUSCL-FEM scheme and a non-structured locally refined tetraiiedrza-

MACHi-LINES VIN L.210 MAX I.TSO OLTA 0.020 tionh.

L



Finite Domain Construction of TVD Schemes
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Introduction. The full paper will consider the construction of nuinerical solutions of the scalar initial-
boundary-value problem (IBVP). The construction of total variation diminishing (TV I)) schemes in periodic
or infinite spatial domains with compact supported data has been considered by several authors in the
literature (see [1],[2],[3],[41). The construction of these schemes in finite dommains his not been addressed.
The proposed paper will discuss the construction of such schemes for the II1Vl'. The basic ideas parallel
those used in the periodic/infinite domain case. The strategy for the full paper w;'l be: (I) show that IIJVP
has an underlying integral constraint which relates solution variations in time and,, space, (2) consider this
integral equation on a discrete mesh with appropriate Stieltjes sums (the "TVI)" co,difiomi), (3) show that
this provides Lax-Richtmyer stability in a maximum norm, (4) construct algebraic criteria for TVI) schernes
using standard arguments of positivity. In the following paragraphs, these ideas will be briefly discussed.

Preliminaries. The model nonlinear hyperbolic equation is given by

(1.0) u, + f(u), =0, -L/2 < z < L/2, L > 0

subject to initial data, u(z, 0) = uo(z), and appropriate analytical boundary co,,litioum

u(-L/2, t) - g() f ' > 0, u(L/2,t) = g(f) f' < 0.

If u0 and g are smooth, then unique local solutions for small time, 0 < t < 7, cun be constructed. This
may not be true for all time, i.e. discontinuities may form owing to the nonlincarity of (1.0). Whenever
discontinuities do form, the viscous limit of (1.0) is considered which leads to the well-known Lax shock
condition which provides that characteristics flow into discontinuities. For smooth initial/boundary data amid
small time the interior solution remains smooth and can be depicted in the z - t plane by nonintersecting
straight characteristics as shown in fig. 1.

Figure 1.
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In the full paper this will be shown to imply that the total variation is conserved in time and space, i.e.
(assuming f > 0)

Z,/2 rT-A L/2 T+At
(1.1) I-/L Idu(:, T+ At)I + 4 Ids(L/2,t)I = J Idu(cT)I Idu(-L/2, t) I

where f Idu - - f du if u increasing/decreasing. This equation clearly shows the balance of inlowing and
outtlowing solution variation in the space-time domain. In the event that characteristics intersect, entropy
increases, information is lost and the variation must decrease.

IL/2 ,T+A
,  

rl 2
+

A
,

(1.2) ,-/ Id-(x, Tr + At) I + Idu(Z,12, tOI < Idn(X, T)I + f Id,,(-L,/2-,tI
fT ZL/)

Consider evaluating (1.2) on a discrete lattice of nodal values of the piecewise constant mesh function
u7 approximating a(z,t). In this notation, (j,t) denote spatial and temporal indices, t = iAt, andj =
0, 1, 2,3, ..., J. Evaluating (1.2) produces the following Stieltjes sums:

J J

(1.3a) I-u+1 - -sI + IA.ja"+1I < - - -4 + 1Aj.u-" , f > o
j=1 3=1

The solution total variation Ei_, IAj_uj is usually denoted by TV(u) and (l.3a) is rewritten

(1.3b) I- + i - -'jj + TV(u'"+') < +1 - U1 + 'rv(")

In the full paper, this equation will be shown to have the correct discrete extrema properties and provides
a criteria for constructing discrete boundary schemes. For simplicity, in the next section stability will be
demonstrated for the left quarter plane problem (f' > 0). This avoids complications present due to the
possibility of extrema introduced because of time varying inflow conditions which will be considered in the
full paper.

Stability Considerations. If an interior scheme arid boundary condition valid in the left quarter plane

satisfy

(1.4) TV(UN+l) + I-N+l - UN1 < TV(u-)

then the scheme is stable in the following maximum norm

(1.5) I = II - 1J.. + TV(-)

The resulting norm is identical to the periodic domain result. However consistency with the conservation
law is used in the periodic domain proof. This bounds the arithmetic mean value of the solution (a constant
dependant on the initial data). Here we have no such estimate and the balance is more delicate. Begin by
rewriting (1.4) in terms of its original variation and boundary terms

N

(1.6) TV(uN+l) < TV( " m) - l"+ + -- u1 < TV(-°) - t e' r - I

Also note that the total variation of a function must be greater than the difference between the maximum
and minimum of the function in absolute value.

(1.7a) TV(u)> m;x(I-+) - min(l-jl) = fl-l]- - in(]uj])
33

10



Combining and rearranging these two results

N
(1.7b) JluN+'JJ. < TV(u ° ) - E i';+ - uU ± i"in(IuN+iI)

j~~~ u + iitnJ+

Using some elementary equalities/inequalities, we can bound the maximum norm by the original variation
and maximum norm.

I1UN+1I <i. -TV(uo) - l " +' - 41 + min(U +', 1)
n=0

N

< TV(u') - E lu" +' - u'J + IUN+11
"i=O

N N

<TV(u) - E I u+ - u1 + li+ ' - IL,) + Ill'
n=O. n=o

N N

<TV(uO) - E - u1 + El ,41 - uI + Ijlu
n=O Vn=O

<TV(u° ) + j1u° < TV(u °) + lUu'1},

With some final manipulations, a uniform norm is obtained

IU+l111. + TV(uN+l) < TV(u ° ) + I1u°1J. I- TV(UN +l)
_< 2TV(u °0 ) + IIullo.

< 2 (TV(uo) + IlioII, I

IIUN+u11 < 21lull

TVD criteria: The development of sufficient conditions for constructling numerical schemes satisfying (1.3)
parallels that developed for the periodic/infinite domain case. A simple example would again be the left
quarter plane problem (f' > 0). For fully upwind schemes, the updating procedure for outflow boundaries
is trivial since the interior scheme can be applied upto and including the outflowing boundary. For upwind
biased schemes, this is not true and special boundary condition procedures are required.

Consider an explicit scheme in conservative form

n At . ,

(1.8) v+1 - vn + a (h+ - h=) =0

where the numerical flux h could be a function of (p - r + 1) grid points, h -(aj_,,...,u, .... ,+r). In
Harten's analysis, (1.8) is put in the form

(1.9) V'' = + + 1 ,, - _

and shown to be TVD if
c >0 

(I- C-- C+)> 0

To illustrate the basic ideas in constructing sufficient conditions for (1.4), we consider a simple 3-point
numerical boundary scheme

(1.10) = r+1 ,- v,A,. u'. ,A

• 11
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This equation could represent a fully upwind form of (1.9) as well as various forms of space-time extrapola-
tions depending on the choice of coefficients. Equation (1.10) is rewlitten in the form

(I.II)= V *= w - Yr - I, _)A, J- I .AJA

To Aind sufficient conditions for satisfying (1.4), we follow the f,.chnique used in the periodic/infinite
domain case. First construct an interior equation for the evolution of spatial increments in v.

(1.12a)~ ~ Ajajume + c 1 A 1 t"(I -C- -.C+)i.jA,..w+ C7 4 AI&jw

with boundary eqution

(1.12b) Av " + ' - (I - C + - D-).. 1 Aj_|v + r; AL,_

Summing over the.domain, applying the triangle inequality and requiring the coefficiets of (I.12a-b) to be

positive, we obtain

(1.13) TV(,,+') + D; IlAj,_.V. 1 < TV(.")

subject to

and
(I - C + - D-)j, 1- 0

Imposing the additional condition that DJ >0 > 0, we have from (1.11)

and equation (1.4) is satisfied
TVv,,+') + l,,*+ - ,* < TV(v")

which is the desired result.

The full paper will expand on these topics and discuss the construction of numerical schemes with slope
limiters.
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The recent appearance of the flux-splitting method [1] 12] used in solving the hyperbolic
system of conservation laws Ut + F(u), = 0 has permitted the setting up of a class of flux-
splitting explicit second-order finite difference JFS schertes that depends on the single
paraneter a. These schemes are stable up to CFL = 2. The equivalent third-order system
(ETOS) of this family has been obtained and the "optinmal" value of a (a = 2.5), that
minimizes the amplitude of the peaks of the numerical solution near the shock, has been
determined by using the numerical tests of shock-tube flow and moving shock in 1-D space
[3]. The STEGER-WARMING splitting allows one to study the ETOS such as the ETOS
associated with upwing schemes JU and downwind schemes JD defined in [4]. This study
shows that the scheme JFS with a = 2.5 (noted Jps O PT) is in fact mnore dissipative than
with a = 1 in the case of a compression wave or a shock. The scheme JFs with this
last value corresponds to the STEGER-WARMING schenie used in [1]. When van LEER
flux splitting is used, the study of the ETOS appears more difficult because the jacobian
matrices associated with the total flux and the partial fluxes have not the same eigenvalues
and in this case the method taken into account above cannot be applied. Nevertheless, the
ETOS has been studied for the one-dimensional isothermal flow and some interesting results
concerning the dispersive and dissipative properties of JFS schemes were brought to light.

In this paper, the JFS schemes are joined to a family of flux-splitting. The partial
fluxes F + and F- of this family are defined by the following two essential conditions:

(a) F = F+ + F-
(b) All eigenvalues of dF+ /dU must be > 0

All eigenvalues of dF-/dU must be < 0
and by four other conditions that define the class of flux-splitting that depends on the single
parameter e:

(c) F+ and F- must be continous
with F + = F for the Mach number M > I

F;- = F for the Mach number M < -1
(d) must be continous everywhere only for M = 0 where it can be discontinous

(e) y must have one eigenvalue that vanishes for IM < 1
(f) F* must be a polynomial in M with the lowest possible degree..

Some van LEER conditions are taken up again (see [2]) and some other conditions are
rewritten. In particular, we no longer suppose that dF:/dU must be coutinous for M = 0

13
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or that all components of F+ and F- must mimic the symmetry of the components of F
with respect to M. Van LEER has already shown the nmrt of the continuity of dF*/dU
or &M = -1 at u times. But when the Mach number becomes small (5 0.5), van

LEER splitting does nt always represent the "optimal" decomposition. Respecting these
conditions, we have sought to define the flux splitting with the greatest number of worthwhile
properties (in particular near the sonic point) and which also gives a better representation
of the numerical solution than" van LEER or STEGER and WARMING splitting when the
Mach number vanishes. To satisfy the conditions (a), (c), (d), (e) and (f), we have retained
the following decomposition when the one-dimensional Euler equations are considered:

when 0_< M< 1

;-=- 1 + e)(M _1) 2  (j= iF p M E
(1) F - [2-(--1)M]  (1') -F 2 -F = Pc2 (M + )-F

F =- F;- 2- (- -IMI2 = F = F p- [2 + I7-1 M ] -F

F= F 3 -_F;- = "M[F; ("'Ae - 2(.-y-1)

when -1<M<0

Fj+ = a (I + )(M + 1)2

(2) - (-g-F+ [2- (7 y - 1)M]

F3+ 2(= -I)and Fi- =F-F +  (i=1,2,3).

In these expressions, c, p and -y represent the sound speed, the density and the specific
heat-ratio. It is difficult to show that the condition (b) is respected for the Euler equations
because of the complexity of the calculations. Nevertheless, in the case of the isothermal
flow (-f = 1), it is possible to demonstrate that this condition is respected for 0 < e < 5/3. It
is thought that this result can be extended to the casey = 1.4. When - = 0, the parametric
flux splitting degenerates to van LEER splitting. The evolution of the eigenvalues is drawn
on fig. 1 for -y = 1 and e = 0.2. The figures 2, 3 and 4 show the evolution of the components
of F, F + and F- with STEGER-WARMING and van LEER decompositions and with the
parametric splitting (c = 0.2).

It is relatively rare to have a Mach number that rer.hes the values -1 and 1 in a
flow. Generally, we have a main flow where 0 < M < M, p (M, p can be greater than
1) with or without some secondary flows where the Macb munber is limited in the lower
values by Mi.f such as -1 < Minf. So, in a great number of applications, it is not useful
to impose the condition of continuity of dFl/dU for M = -1. We can replace it by
a condition of continuity of the same functions at M = 0 (in this case dF:/dU will be
continous everywhere). We have carried out that by using only the flux splitting (1) (1') for
Mi.f < M < 1. The retained decomposition (1) (1') for the problems presented below must
verify the following conditions:

for Me f M < oo
(a') F = F+ + F -

(b') All eigenvalues of dF+/dU must be > 0
All eigenvalues of dF-/dU must be < 0
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(c') F + and F must be continous

with F+ = F for the Mach number A1 > 1
(d') dF'/dU must be continuous everywhere
(e') dF*I/dU must have one eigenvalue that vanishes for M < 1
(f') F* must be a polynomial in M with the lowest possible degree.
The new decomposition (1) (1') has been applied to shock-tube problem and compared
with other methods:

a - 1, e = 0 (STEGER WARMING scheme with van LEER splitting)
a- 2.5, e = 0 (j°S scheme with van LEER splitting)
a=2.5, e=0.3 (CFL=1)

or e = 0.2 (CFL = 1.6) (J;ot scheme with parametric splitting).
The pressure ratio that is equal to 13.5 maies it possible to have a Mach number

varying between 0 and 1.14 and thus to test the new method in the case of a supersonic
zone included in subsonic zones with different acoustic phenomena (expansion wave, contact
discontinuity and shock wave). The figures 5 and 6 present the evolution of the pressure and
the Mach number with respectively CFL = 1 and CFL = 1.6. The comparison between the
fig. 5a and 5b of fig. 6a and 6b shows that the €JoS scheine reduced the spikes at the shock
appreciably. The solution is still improved when e = 0.3 (CFL = 1) or e = 0.2 (CFL = 1.6),
especially in the region where the Mach number is weak (in front of the expansion wave
and the shock) (see figs. 5c and 6c). The flux splitting method creates a discontinuity in
the expansion wave at the sonic point. This phenomenon does not appear in the contact
discontinuity that is spread out on five points.

We have also studied the shock-tube problem with a pressure ratio equal to 2.8 (5]. This
case permits to have a contact discontinuity that moves more slowly and a Mach number
that remains relatively weak (0 < A1 < 0.4). The numerical solution is presented in fig. 1
with CFL = 1. like in the previous problem, on one hand the solution is improved near
the shock when a = 2.5 (figs. 7a and 7b) because the scheme JFS is more dissipative with
this value. But on the other hand the solution of the expansion wave is lightly damaged for
the opposite reason: when we adapt the value of a to have a more dissipative scheme for
uZ !5 0, automatically the scheme becomes more antidissipative when u, > 0. In the present
case, we solve this problem by using the couple of parameters (a, e). The value of the first
parameter a is adjusted to have a good solution when u, < 0 (shock or compression wave)
and the second parameter e permits to have a correct representation of the expansion wave
(fig. 7c). The contact discontinuity is not affected by the different treatments and spreads
out on five points.

The conjoining of JTFS scheme with parametric flux-splitting has been applied to 2-D
flows too. A 2-D steady flow inside a nozzle has been studied and the result obtained with
different values of e are compared. Like in [6], some problems appear near the wall with
c = 0, in particular strong oscillations of the numerical solution arise on the wall and the
computation diverges rapidly. This is probably due to the strong gradient of the partial
fluxes near the wall that are in this instance, sensitive to the different numerical treatments
applied to the boundary mesh point and the following mesh points close to the wall. If the
value of e is adjusted so that the gradients become weaker, these problems are eliminated
and the numerical solution becomes correct (fig. 8). Thim computation was realized for
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CFL - 2, with a grid of 131 points over 21 points, and without artificial vscosity since
the present method does not require the adjunction of such treatment. A 2-D flow past a
biconvex profile in a channel with unsteady inlet conditions (sinusoidal pulsation of total
pressure and total enthalpy) has been also studied. A movie has been made. This example
makes it possible to see that this method is capable of understanding complex acoustic
phenomena.
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Compution of Inviscid Vortical Flows in Piston Engines

B. Binninger, H. Henke, D. Hiinel

Aerodynamisches Institut, RWIH Aachen

Two- and three-dimensional vortical flow in a cylinder of a piston engine is

investigated by means of a finite-difference solution of the Euler equations.

The flow in a cylinder of a piston engine is characterized by complex vortical

structures of large and small scales, resulting in turbulent behaviour in the shear

layers. Therefore all the attempts to predict such flows have to rely on simplifying

assumptions. A survey of such investigations is recently given by Heywood /I/.

In the present investigation interest is focused on the formation and development
of large-scale vortices during the intake and compression stroke. The vortex
structures are either generated by the jet-like flow when the air enters the

cylinder, or by the shape of the piston. As far as the formation of the large vortices
are concerned friction can be neglected and a descripLion of the flow can be given

by the Euler equations for compressible, time-dependeiit flow.

For the solution, the Euler equations are formulated for contour- fitted curvilinear,

time-dependent coordinates

= ,(xPyzpt), YJ := iJ (x~y~z~t), 9 (x~y~z~t), Tr t.

The equations then read

U T +Ft .Gn. +Ht =0.

In order to be able to compare with flow visualization studies through Mach-
Zehnder interferometry and similar techniques, calcidations were performed for

.I
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plane flow. Furthermore the investigations include axisymmetric and more re6ently

three dimensional flows.

Spatial discretization was carried out with central differences. Artificial damping

was introduced to suppress the high-frequency error components. The central

differencing was chosen, because it seems to be better suited for the present low

Mach number flows, than an upwind scheme as used in /Z/. The Mach number is of

the order of 0.1.

For the integration in time two time-consistent solution methods are used, namely

the implicit factorized scheme of Beam and Warming /3/ with first order accuracy

in time, and the explicit five-step Runge-Kutta scheme with second order accuracy

in time for nonlinear equations /4/.

The difference of the two solutions will be discus;ed in the paper. Numerical

experiments carried out in the frame of this investiqation show the behaviour of
the solution in the vicinity of tangential discontinuities which, as a part of the flow

problem, are formed by the incoming jet flow during the early phase of the intake

stroke.

The spatial and temporal development of the vortices in the cylinder as obtained by

the solution will be demonstrated for the intake stroke and the compression stroke

for several conditions.

The computational results are compared with experimental results obtained from

Mach-Zehnder interferometry. Figure 1 shows computed lines of constant density

with the corresponding interferograms for plane flow at different crank angles.

/1/ 3. B. Heywood: Fluid Motion Within the Cylinder of Internal Combustion
Engines - The Freeman Scholar Lecture, Journal of Fluids Engineering, March
1987, Vol. 109/3.

/2/ W. Schr~ider, D. Hainel: An Unfactored Implicit Scheme with Multigrid
Acceleration for the Solution of the Navier-Stokes Equations, Computers &
Fluids, Vol. 15, No. 3, pp. 313-336, 1987.

/3/ R. Beam, R. F. Warming: An Implicit Finite-Difference Algorithm for Hyper-
bolic Systems in Conservation-Law-Form, Journal of Comp. Physics, Sept.
1976, Vol. 22, pp. 87-110.

/4/ A. Jameeon, W. Schmidt, E. Turkel: Numerical Solution of the Euler Equations
by Flnle Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA-
Paper 81-1259, 1981.
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Fig. 1. Comparison of computed vortex pattern with experimental res;ults obtained it] the
compressible flow of a two-dimensional model of a piston engine.
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COMPUTATION OF AXISYMMETRIC WAVE PROCESSES IN
VISCOPLASTIC SOLIDS WITH CURVED BOUNDARIES

C.D.Blsbos
Lehr- und Forschungsgebiet Mechanik.Temliergraben 64

R.W.T.H. Aachen, D-51 Aachen, FRG

Some metals of technical Interest, exhibiting nonlinear behaviour, can be
modelled through an elasic/viscoplastic material law, within the small defor-
mation theory, as the laws of PERZYNA(/1/./2/) and BODNER-PARTOM
(/3/./4/) on the basis of the von MISES hypothesis.This paper presents a
computational method for the numerical integration of the semilinear hyper-
bolic system of partial differential equations, which governs the propagation
of axisymmetric acceleration waves in these materials ( three independent
variables :two space variables r.z and the time t).

The presented technique Is based on the method of bicharacteristics and
includes weigthed finite difference schemes for the various point types to
treat Irregular meshes (Fig.1). At every time step are imposed two boundary
conditions as functions of the arc length of the boundary curve (Fig.2).The
derivatives of these functions with respect to the arc length can be consid-
ered as given data of the problem. Through differentiation of the equations,
connecting the boundary tractions(resp. velocities) with the stress tensor
(resp.the velocity components along the coordinate axes),two new equations
for the boundary schemes are obtained.This way the boundary curvature x
is directly incorporated in the solution.FORSTElt has proposed a similar
idea for hyperbolic flow problems(/5/).

Denoting by V, the velocities, by Oij,Eij the stress and strain tensor and by
siheij the related deviators we have the following system of partial
differential equations :

)Vr - Orr,r - Orz,z - (Orr - oww)/r - 0

PVi - Orz,r - Ozzz - Orz/r = 0

Okk - (2V+3X)Ekk = 0
(1/2p)Sl - ij- (y/2)F(J2)sJ = 0

with:
J2 = (/2)/si,

F(J2) F F2  for the BODNER-PARTOM material
F(J2) = Fi(F 2> 'for the PERZYNA material

<A> = max ( A, 0 ).

p, X, V1, ', nl, 0, are material constants.A comma between subcripts denotes
partial differentiation with respect to the following subcript variable and a
dot denotes partial diffentiatlon with respect to time.
Using the velocity-strain compatibility relations to eliminate the strains we
obtain the governing system in the form:
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L(u)=A' uw + Au,, + A'u,+b(u) =
with unknown functions u

6- { v, v., okh/ 3 , (r0,0.)/2, (Orr-2ww+azz)/6, Orz
i.e. the two velocities,the trace of the stress tensor and the components of
the stress deviator. The matrices AlgrA are constant and symmetric and

Ais positive definite.Since only the last three components of b(u) are non-
linear functions of the last three components of u. the system is partly linear
and partly nonlinear. This fact is used later in the numerical schemes to
reduce the number of iterations needed. The t-ondition of characteristic
surfaces : 40(r,z,t)=const.

€,t 2 ($,, 2-CP2 ($,, 2+,, 2))(€,-Ct2(€,,2 ,+,2)) 0
CP2 =(X,+2)/p, cp2 Lip

and the corresponding MONGE cones (/6/./7/./2/.Fig .3a) are derived
from det(A)0, A-f,,A +4,Ar +¢,7 A1

The left eigenvectors of A yield the compatibility equations, which involve
derivatives along bicharacteristics and cross-derivatives in the characteristic
surface elements:

I' L(u) = 0, ITAO
By TAYLOR expansion and integration of a) the compatibility equations along

the bicharacteristics and b) the equations of motion along the pathline,
difference equations of second order accuracy are obtained for computing
the solution at each mesh point at time t=tK from data in the dependency
region of the point at time tK -At. The data on the basis perimeters of the
MONGE cones are determined from corresponding second order interpolation
functions over the points belonging to the convex hull of the dependency
region (CFL criterion).The coefficients of the interpolation functions are
obtained through a local weigthed least-squares procedure. The weight of
each point is related to its mass and to its distance from a circle, whose
area is equal to the middle value of the base areas of the P- and the T- cones
(Fig.3b). The final finite difference system has the form:

L CONu[ f uj q LT u N T

SC N u d uL:=ut, U2 U3
[_ND CNL CNNt+N(u) U, N1 U. T = U4, US, Usi

where f collects spatial derivatives of U at time t are constant matrices
and N a 3x3 matrix nonlinearly depending on the deviator components U N
Eliminatingf and separating the linear part from the nonlinear one we obtain:

U= h +__Gu N ( _: constant matrix)
H(u N) UN-N (H nonconstant matrix)

The last system is Iteratively solved for UN by a NEWTON-RAPHSON
procedure and then the first equation yields U The bicharacteristics used
for an Inner point are shown In Fig.3.c. L

For boundary points a part of the bicharacteristics set is replaced by the
boundary conditions and two of the following relationsselected according to*1



the boundary condition type (derivatives d/ds are boundary data).
for boundary tractions S N ( normal). S T ( tangential):

(dSm/ds) -2x ST O0.5(Gfr+ozz),r sin w+0.5 (or,-ou), sin lacos2w
-0.5(Orr+OZZ),COSO)+0.5 (O-orz o wcs2
+Or, sinwsin2 w - o,z~zcoswsin2w

(dST/ds)+2x(SieO.5(otr+oz))=
0.5(Orr -Sr),r sinwsin2w +0.5(arr -azz).zcos fi)sjf26)
+Grz,rsfiwcos2z) - Orz,zcosfz)(,os2b)

for boundary velocities VN(normal) N V (tangentiail):

-(dVN /ds) - XVT= 0.5 (Vr,,-vz~z) sin2w-0.5(yr,z' v19)cos2w-0.5 (vr,zVz,r)
-(dVT /ds) -xVN =-O.5(v,, 1+v,,)sin2w-.(V,-v,~cs +0.5(Vr,r+yz,z)

The used bicharacteristics for various boundary conditions are shown in Fig.4.
It is remarkable that the number of bicharacte ris tics varies from 4 (pure
velocity contitions) to 6 (pure traction conditions), i.e. every von NEUMANN
condition requires an addittional bicharacteristic.Similar schemes are devised
for corner points and for points on the axis.
Two numerical examples .concerning solids made from mild steel and alumi-
nium.are discussed along with some similarities of the method proposed to
mixed finite element formulations.
LITERATUR
1 ./PERZYNA.P.. Proc.Vibr.Probl..4,(1963) .281-289.
2./NOWACKI ,W.K..Stress waves in non-elastic solids .1ergamon Press .Oxford .1978.
3./BODNER.G.R.,Y.PARTOM.J).Appl .Mech.,Trans. of ASME.39,( 972) .751--757.
4./ZHOU.G.Q ..H.GI-ONEIN.Y.CHEN.Comp.and Struct..18.(1984).591-601.
5./FOERSTER.K.,Archiv.Mech..32,(1980) .655-661.
6 ./COURANT.R. .0 HILBERT ,Methods of Matemnath ical I lhysics .Vol .11 ,lnterscience

Publi shers, N.York.1968.
7./CLIFTON ,RJ.,Quartl .Appl .Math.,25.( 1967) .97-116.

Fig.J:Axisymmetric solid with Fig .2:Conditions at the boundary:
partly irregular mesh aOboundary curve :rr(s),z~z(s)

b)raction conditions:SN=S14(S),ST=ST(S)
c)Velocity conditions: VN=VN(),VTSr(S)
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Fig.3.: a)MONGE cones
b)Convex hull of dependency region - mass weighting
c)Scheme for inner point
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SOME QUESTIONS OF MATHEMATICAL SIMULATION IN THE
PROBLEM OF SHOCK WAVE STABILITY

A. M. Blokhin
Novosibirsk

USSR

The talk is a survey of results obtained by the author ([1]) in the problem of shock wave
structural stability.

In [1) this problem is interpreted as the investigation of correctness of the mixed problem
for gas dynamics equations with boundary conditions on a shock wave. For a stable shock wave
this problem has been set up correctly, for the unstable one it admits the construction of the
incorrectness example, like the Iladamard example.

In the lineai case the mixed problem is formulated as follows. For t > 0, z > 0, jyj < o we
search for the solution of acoustics system of equations

/.M2  000 1 0 0 0 0 0 U
0 0 1 0 U 2M2 0 0"Ut + 0 M2 0 1, + V= x= )

0 10 0 1 0 0 1 0 0U3
\0 0 0 1. 0 0 0 1). (0 0 0 0) U4

which satisfies the following boundary conditions for z = 0:

A
ui +du 3 = 0, u 4 +u 3 = 0, u2 = - .F , Ft =/'u 3  (2)

and the initial data for t = 0:

U(0,X,y) = Uo(z,y) . (3)

Here M(0 < Al < 1),d,A,p are some constants ([1]).
Using the results of paper [2] on a plane d, A one can single out a domain

K : A < 0, d + M 2 A/ 2 > 0, f2 1 _M 2 ,

in which exponential solutions of the mixed problem (1-3) do not increase with time. In [11 it
is shown that if a point (d, A) E K, then the following a priori eo.imate

I+(t)Ilw@(R) :_ C(T). oU0IV2(R2 0 < t < T, (4)

= {(XY)Iz > 0,1 1 < o}

is valid. The existence of the a priori estimate (4) implies that the problem (1-3) is correctly
set-up in the domain K which is called the domain of the shock wave stability. All estimates
obtained for the problem with constant coefficients were also obtained for the case of variable
coefficients. Then, by means of rather cumbersome methods the author managed to prove the
local theorem of existence and uniqueness of the classical solution for quasilinear solutions of
gas dynamics behind the curvilinear shock wave.

The talk discusses some problems of defining and investigation of difference schemes for gas
dynamics equations. We propose to design and investigate difference schemes on the basis of the
requirement of adequacy of the difference model to the initial differential problem. By adequacy
we imply the following: a difference model is constructed so that by means of it one could prove
the theorem of existence of a solution for the initial differential problem. Due to quasilinearity
of a system of gas dynamics equations to prove the adequacy of a difference model to the initial
differential problem is rather difficult. It can be done easily for the linear mixed problem(1-3).
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A difference model for obtaining approximate solution of this problem is constructed so that
it could admit the construction of difference analogy of the dissipative energy integral. The
existence of such an analogy allows us to obtain energy estimate from which the stability of
the proposed difference scheme follows. This would mean the adequacy of the difference model
to the initial differential problem because in the presence of energy estimate the theorem of
existence of smooth solution can be proved via standard calculations.

References
1. Blokhin, A.M. Energy integrals and their Applications to the Problems of Gas Dynamic.-

Novosibirsk, "Nauka",19&, 239 p. (In Russian).
2. Djakov, S.P. On shock wave stability. Z.experimenta'noi i teoreticheskoi lizili, 1954, t.27,

No 3/9/, 288-296. (In Russian).
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A TVD-PROJECTION METHOD FOR SOLVING IMPLICIT NUMERICAL SCHEMES
FOR SCALAR CONSERVATION LAWS

A.Bourgeat* and B.Cockburn**

The stability of Newton's method applied to implicit numerical
schemes for scalar conservation laws requires, in the general case, an
upper bound on the size of the time steps. We Introduce a simple locally
defined projection , called "TVD-projection, and show how to use it to
obtain an always stable extension of Newton's method.

We consider the problem of actually solving finite difference
implicit schemes for the following boundary value problem

(l.la) i tu+a f(U)=0 in(O,T)x(O,1) .

(1.lb) u(x=O) = bo  on (O,T) 9

(i.lc) u(x=l) = b, on (O,T) ,

(1.ld) u(t=O) =u0  on (0,1) ,

where fe C' ,bo and b1 e BV(O,T) ,and uo e BV(0,1). It is very well known

that the main difficulty concerning the resolution of an implicit scheme is

to solve at each time step the nonlinear equation defining the

approximate solution. One of thid most popular methods to do this ,is the

Newton's method. Its quadratic convergence makes it very attractive;

however ,its lack of global stability makes it useful only if a suitable

initial guess can be obtained. A widely used practice is to take the

approximate solution at time tn , un h ,as the initial guess for the

calculation of un+1 h:

(1)
Ub = 'b

U (12+1) . (,.,) .U b =4 b(Ub ) m= .. ,

Universit St Etienne ,U.F.R. Sciences, 23 rue Dr P. Michelon, 42023 St Etienne Cedex 2.

Univeit of Minnesoa ,514 Wncent aI1,206 Church Street SE, MinneapolisMN
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But in this case the sufficient conditions for the convergence of this

method given by the classical theorem of Karitorovich ,impose an upper

bound on the time step Atn =tn+l-tn .In this way ,the main advantage of

using an implicit scheme is lost.

In practice, the number of inner iterations Mn is usually taken to

be equal to 1, but some authors prefer to do a few inner iterations in order

to improve the accuracy of the approximate solution. But it should be

noted that in any case if the time step is too big the stability of the

method is lost. For instance consider a problem of the form (1.1) with

f(u) = 20 u3 (20 U3 + (1- u)3 ) "-

Uo(x) =0 ,x E (0,1)

bo(t) =1 ,te (0, T=0.3)

b1 (t) = 0 ,te (0,T=0.3)

and consider the approximate solution obtained by discretising (1.1) with

the implicit Godunov scleme. Then ,if we solve' it with no limitation on

M', it becomes unstable as the time step become,; greater or equal to 0.7

Ax. Note that the CFL-condition for the explicit Godunov scheme is in this

case At<0.26Ax 1

Writing down the implicit Godunov's implicit scheme for (1.1) and

its Newtonian iterations ,in a first section ,we stress the fact that the

r stability of Newton's iterations depends essentially on the size of I f"I

rather than the one of I f' . In the case f' >0 wt. make these statements

precise by calculating explicitly the eigenvalues of the operator grad(

nh) and the Kantorovitch convergence conditions. We then display

sufficient conditions of convergence and a non-linear CFL-type condition

involving only the quantity •

2
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Ilf' 1L- [disc(lf"llL-) I

where disc(.) represents the maximunt ilwze of the discontinuities

of the initial data. In particular ,it is shown that i the ratio
II f El 11 f 11L7

is big enough the Newtonian iterations are stably .

In a second section we test numerifrslly the stability of the

Newtonian iterations in five different Riemann poblems.The first three of

them have a non-decreasing nonlinearity ;the last two have a non convex f

and their solution present a sonic point. Thosq tests allow to define a

function that mesure the stability -of Newtonian iterations and will serve

as a reference for evaluating the performanum, of our proposed TVD

projection method.

In the last section we introduce a new and very simple method

for overcoming the Newtonian iteration difficulty. It consists in replacing

the inner Newtonian iterations by the followititl modification

(1) nl
Uh = Uh

(M+1) i(m) n (m)
U h = P(U h )h( u h m=.

where Ohn  is the same as before,and thi, operator P(Vh), called

TVD-projection, is a locally defined projection verifying the stability

property:

lIP(Vh)(Wh)IIBv! <1 IvlBV

With this new inner iterations procedure, no oscillations due to the

linearization leading to the definition of Ohr' appear anymore; and the

method is then always L° fn BV-stable regardleus of the size of the time

P step. However the price that we have to pay for tability is a loss of total

amount of mass , due to the projection P(u(m)h) ,which is added to the

loss of mass due to the standard Newtonian iteuiiions. Nevertheless ,we

30



have to point out that when the step size Atn is :.,,iall enough our method

reduces to a Newtonian one. Our numerical ,-Ioerience indicates that

this supplementary loss of mass tends to zero w'.ith the number of inner

iterations and that once it becomes zero it stays equal to zero ,so that the

method coincides with the Newton method after ,i certain number of inner

iterations. Once this happens, convergence is aclived very quickly and it

suffices to use a stopping criterion based on a c;ontrol of the amount of

mass lost by our projection

Numerical tests, performed on the sam e test problems as in

section 2, show that there is no more instability occuring under any time

step; morover using the above stopping criterion allows a time stepping

at least two orders of magnitude bigger than this one allowed by the

standard Newtonian iterations.

3

31.

ill I



B

A STABILITY ANALYSIS OF THE GLIMM v'OB SCHEME

Yann Brenier

INRIA France

Let wt + f(w)x = 0 be a system of d conservation laws in on.- space dimension. It is assumed that,

for each pair of states u, v in a neighborhood W of the orijuin in Rd, there exists a "Roe matrix"
(see [3] for a review of this concept) A(u,v) satisfying the foi lowing requirements:

i) A(u,v).(v-u) = f(v) - f(u) and A(u,u) = f(u);

ii) A(u,v) = I )Xk(U,V) Pk(U,V)
k=l,m

where XM1 .. are its m (m<d) real distinct eigenvalue:. of respective multiplicity d,,.... di

(dl+...+ dm=d), and P ,.... Pm are the coI-esponding eig, ,iojectors:

PkPI = 8ki Pk for k,l = 1,...,m and P1+...+ Pm= Idenlity

iv) )L1 . M and P,', PM are Lipschitz continuous wilh respect to u, v
v) multiplicities d1, .... dm do not depend on u and v;

vi) the eigenvalues are globally separated :

k(Ul,vl) < 1k+1 (u2,v2) for any ul,vl,u 2,v2 in W awl k = 1,...,n-1.

Under these assumptions (which include the case of mtity physical hyperbolic system,

conservation laws and any strictly hyperbolic system), it i:, shown that there exists a cons

C=C(W) such that, for any initial data w0(x) of total vati,,tion no larger than C, the Cat
problem has a global weak solution w(t,x), valued iW W, of bounded total varial,

Unfortunately, as it will be discussed below, this solution may not be physical.

The proof is based on a stability analysis of the "Glimm-R.,e" scheme, that is a combinatic

Glimm's random choice method [1) and Roe's Riemann solver [2]. A total variation estima 's
obtained in the same way as Glimm did in his famous paper. 'Ihe analysis is somewhat simpler oe
to the extreme crudeness of Roe's approximate Riemann soher. Indeed, our estimates only d
the Lipschitz continuity of the eigenprojectors, instead of the properties of the exact Rien r. n

problem. This is why any assumption of genuine nonlinearity ,.f linear degeneracy can be avoir 1.
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Nevertheless, the main drawback of the method is that the so obtained weak solutions are not

necessarily physical and may violate the entropy conditions because of the Roe Riemann solver ! It
would be very interesting to prove the same existence result when the well known entropy
modification of Roe's method [31 is used, but this has not be done so far. A different way would

be to show that the non physical shocks created by the Glimm Roe scheme are not stable under L1

perturbations, and therefore can be easily removed. Som. results have been obtained in this
direction, for the very simple case of scalar conservation laws. More precisely, it can be shown
that the solution of the Cauchy problem is physical, provided there is no entropy violating

discontinuities in the initial data, and either the flux function f is convex, or the initial condition

w0(x) is monotone.

Another interest of the Glim :nl Roe scheme is the stability analysis of LeVeque's large time step

method 14]. Indeed, in the same way as for the Godunov scheme, a la.ge time step version of the
Glimm Roe scheme can be easily designed, by "allowing waves to pass through one another with
no change in strength and speed" [41. This technique is closely related to the concept of averaged
multivalued solutions [5], as well as Morton's characteristic (;alerkin method 161. In our case, it is

shown that the large time step Glimm Roe scheme is total variation stable, provided the time step is
limited in such a way that two waves of the same family cannot pass through one another. The

resulting stability condition is much weaker than the usual ('FL one (for which no waves of anly
kind are allowed to pass through one another). In the trivial case of a constant coefficient system,

for example, the scheme is nc( litionaly stable.

i1 J. Glimm, CPAM 18 (1965) 695.

[21 P.L. Roe, JCP 43 (1981) 357.

[3] A. Harten, P.D. Lax, B. Van Leer, SIAM Review 25 (1983) 35.

[4] RJ. LeVeque, in "Numerical methods for the Euler equations", INRIA Workshop, SIAM 1985.

15] Y. Brenier, in "Numerical methods for the Eulcr equations", INRIA Workshop, SIAM 1985.
[61 P.N. Childs, K.W. Morton, Oxford University Computing Laboratory, 1986.

INRIA Rocquencourt, 78153 Le Chesnay Cedex, France
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On some open questions related to MHD Riemann problem

Prof. Dr. Mosley Brio
Department of Mathematic:;

University of Arizona
Tucson, Arizona 85721 U.S.\.

We reviw'N briefly properties of the MHD equations a:i a hyperbolic systmn of conser-
vation laws (derived about 30 years ago) and some recent itumerical and analytical results
by Brio and Wu (1985-87) which are in contrast with a pop,) ltar view that the previous work
makes MHD Riieann problem as well understood as, for ,nample, similar problem in ga.
dynamics. In particular we show that MHD equations, due to their nonstrict hyperbolicity
and nonconvexity, are much closer to some systems arising in combustion, elasticity and
flow in a porous inediuin than they are to Euler equatiom; of gas dynainics. We dcscrilb(
some techniques found to be useful for these problems, such as bifurcation from a doublc
eigenvalue, global bifurcation, topological technique for traveling wave solutions, reductiV,
perturbation technique, numerical methods and list open problem for stability of wave pat-
terns, admissibility conditions, wave propagation and interaction which might be attack('!
by the above methods.
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Qualitative Problems of Autonomous Hyperbolic
Systems

M. Burnat
Warsaw University

The qualitative theory of autonomous ordinary systems

du

may be generalised is some naturale sense to hyperbolic autonomous P.D.S. of the following
form

n

(2) ZAi(u)49,iu = f u)

where A,(u) are I x I matrices and solutions are mappings u : D C 1Rin -+ It' of some region
D.
The basic facts for the qualitative theory of (1) are:

a. Simple available global existence theorems.
b. In order to obtain the solution of (1) it is sufficient to know its set of values u(D)

because one may then parametrise it simply.
c. One may obtain informations about u(D) (for instance first integrals).

Because of the lack of global existence theorems for (2), the general qualitative problems
for the partial differential case should be formulated as follows: 1. Assuming the global
existence of the required solution u defined in some region D, construct the image u(D)
of the solution or at least obtain some information about it. 2. Knowing u(D) ask about
the parametrisation of u(D) by the variables x1 ,. . . , x, giving the solution. 3. Find image
manifolds M C 111' having the property, that for some infinite class of solutions we have if.

Knowing the image u(D) of the solution of a given boundary problem we obtain a
number of qualitative informations. Knowing how to parametrise u(D) we may construct
the required solution (the parametrisation may be simple or more complicate, for example
it may require solutions of some nonlinear P.D.S.) or run into contradiction. In the last case
we obtain a nonexistence theorem.

Our methods represent a fargoing development of those used in [1]. In the space of the
matrices, we consider the planes

xu)= {N: N = A'j(u)N,, = f.(u), s = 1,...l}1

where Aj(u) = (Aaj(u)) ,N = (N.,),f(u) = (f,... ,f,). The C'-mapping u: D C IR"

IR' represents a solution of (2) if for x E D:

Du(x) = (a,,uj) = (Nij) C X(u(x))
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For the manifolds M c IR' we introduce the notion of the equipment of M. This are planes

X'(u) c X(u) satistying for u E M the following conditions

dim X'(u) = const, for N E x'(u) N: IR" v- T,(M) C IR'

We seek for solutions

u: D - M, D(u(x)) E X'(u(x))

We shall say, that the vectors A= ()I,..., A,) and -y = ( y-,... , 71) are adjoint at u, denoted
A -Y-y if (E Aj(u)A,) 7 = 0. For the uniform hyperbolic systems (f = 0) we have

(3) X®(U)= N:N=EjO', q<+oo,7i =X(U)
A =1

(see [2]). This equality may be considered as the most general, geometric definition of the
hyperbolicity. Because of (3) the image manifolds are tangent to vectors -y, what allows us
the construction of this manifolds. We shall give two examples of concrete results.

EXAMPLE 1 (sce 13]). Considcr the hypcrbolic system describing the steady plaiic
flow of the ideal plastic material.

,,a - 2k (cos 20,9., V + sin 2V 0 2,t9) = 0

9,,a - 2k (sin 20t9 V - cos 2t9 ., t9) = 0

(9 v1 + 4r,v2) sin 2t9 + (0X,vi - ax, v2) cos2t = 0

19,V 1 + O.,V2 = 0

u=(vI,v 2 ,V, 0), u:DCIR2 -" IRW, n=2, 1=4.

We have two characteristic vectors and the two corresponding kinds of characteristic curves
1 2

C, C. From (3) we deduce:

Theorem 1. All two dimensional C1-image manifolds M 2 : u = ' (Al, P2) may be
constructed by solving the following linear hyperbolic system

8,,,tV + tg9V, V2 = 0 81,2 - Ctg, V2 = 0
a..-+28a,,.9=o

M Consider the problem of drawing of a plate through
the die. In the region D, which boundary consists

vT 1 - E) of the curve T (the working part) and characteristic
c 2

D H curves C , C, we seek for the solution satiesfying the
V Ufollowing nonlinear boundary conditions
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oil C V1 Sill 1 - V'2 COS 19 = -V sinl 19 V couist > 0
2 /1

oil C I O 0 +os ?±2 Sil 1)=1/(1-e 0=
H

ill a _9a

\Ye have to (leterillilie the solutioni atid the regioli D9 1.iiowiuig the curve T' vid iiutll ers

1', hi, HI. The solutioni may be singular inl 1, mt. Let Z =1) \ {l, ml mind N( Z) be I-le ls
of tllajppiligs it: Z P-4 110i sa~tiesfyjuig thle following coiditio lis: 1. . is ill Z of C' -(lass with

the exceptioni of somle weak discontioities along characteristic curves.
1 2

2. For p E D9 tile characteristic Curves C (1)), C
m ~)colining out of 71 mleet tile chiaracterishcr (.1II11s

(711, (1), (t, (1). Usiing the iiaximal eqiplletits of the

ittnage 1umo tifolds " 2 C 11' we o(h )awithou llt''"

1 a~WSlilt ptioIis aio' it thme si mgmlait ics at 1. 71) the f 1-

p C( p)
2

Thecoremi 2. Fo r giveii 0 < c < 1, V 74- U. thelre (-ist s exactl oIc ) I imiage l11liilifold

A 120(, Q M icwh that for each soliition of omit pn ldin vi C- f'( Z) and arbh fry vW 1k ii ig p;17

' : UP) C Al2 K 10 V) If 2' i ~I OWN. tl heni"TI assinny ipi l Im tme solti f ionii i C( Z)
exists,, t( Z ) may be mziiol\,,1 :--frilllied'.

The imiqiliess, a iluwilhcr of qii1-alitat ive iilfonrmtiomis.' (1i1d Some Imoiexistetice thcil~ls

are( out ainied.
Exaimple 2. Coxisder the systemit deseril ~i1ig ,1 te jl ,lionl-:teady iseimtr-opic gas flow.

at, + cI -F, C V2 (9, ,( + k'"i\ i' U

(4) ot v +- 1,1 v*4 ?' a, I -v- + Ua

i thme case of tie one (hillelisiua~l nion-steady flow thme v( 'Iivii solit 1iolvs play al1l imlllj( )t~al

role (see 14]). For the uniform hliei whlic systemis (2) thiere oftei exist, s~imp le ava ila 1 l1

coimlical solutions. Suppose that for the imamifold Alk C ll!'i k < ?I, there cxist functions in:

" 111.1I, i=1, . . . mt-k, 4 liearly illdepcielt..it 119(ut) C f (1('tlts thle plae iiciuig

111"Y, and tangent to lin 10 (.) . . "Ok ( U, so tMat the miappig ttCoil.r : D C JR."' F-+ Altk

givcii by the coflditimlis = u for xT E IV'(L y1) =/ coi:4, represemits ill 5011W (lomaiii D9

the solutio. Image minfl ds allowing tAs 5mm plme -oniic; I paralmetrisattimw call coitie I

iage mianifolds. Our prolcimi is to find( for (4) Simiple available conical imanifolds It! 2 CIR

37



A B

Using (3) we get the following answer (see [5],[6]):

M2 : U = + Il' + (.0), (p,1IL2) E

where

-Y =(70 y, 2 ) =(0,y)=const, k 71 2

(/12) = (0, 91( L2),92(P2)) (0, J)

The functions g(12) have to satisfy the conditions (1,9) 5 0, 412 -9192 $ 0. Assuming
4i #0:

(k 1g -(0g
a(u) =Y C [.l 91 -c] 4iK [9i - (Vi\ -r-))

Infinitely many other, more sofisticated conical manifolds itnay be constructed.
By means of our methods we may for (4) investigate the interactions of plane waves

with and without shocks. For steady flows we may construct a wide new class of three
dimensional nozzles, which transform one uniform flow into another one without shocks (see
[71).
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HIGH RESOLUTIN FINITE VOLUME 'C HEMES
AND (X4PUTATI(NAL AERODYNA IICS

by

D. M. Causon
Department of Mathematics and Fhysics

Manchester Pol ytechni,
Chester St

Manchester M1 5GD

U.K.

Over the past few years, substantial advance;3 have been made in the
numerical analysis of hyperbolic partial differenitial equations, especially
those governing non-stationary gas dynamics. A popular approach is to
solve numerically the tine-dependent Euler equations which are of
hyperbolic type. Shock waves and other discontinuities can be captured
accurately without special tr eattent by ertploying a so-called
"time-marching" numerical scheme. It is now p':ssible to apply available
computer codes to problems which involve cxrplex physical phenomena
including multiple shock waves, vortex sheets .and combustion processes.
Examples of methods in use are the flux-:orrected transport (FCT)
algorithms of Boris and Book (Ref. 1), the randlom choice method (RCM) of
Chorin (Ref. 2) and Glimm (Ref. 3) and the total variation diminishing
(TVD) schemes, of which Refs. 4-8 are representat,.e. All of these methods
stem, essentially, from a widespread dissatit faction with the highly
diffusive schemes of the early 1970's. These were characterised by the
appearance of non-physical undershoots and ,,vershoots around captured
shock wave profiles and the need fo- large dos,,s of artificial viscosity
(numerical "smoothing") to ensure stability. ihe addition of artificial
viscosity in large quantities causes a maked loss of resolution,
particularly in cases where complex shock wave iiiteractions occur.

This abstract concerns the development and appli, ation of a total variation
diminishing finite volumne method for computational gas dynamics. This
method employs operator-splitting which enables a problem in three space
dimensions to be solved by applying a setuence of one-dimensional
operators. It also uses discretisation by fin1ite voIluMs, rather tha
finite differences, in order more easily to rip the complex geometries
which arise in practice (Ref. 9). The classical MacCormack method is put
into total variation diminishing form by appenoing to the right hand side
of the corrector step, a specially devised artilicial viscosity term. The
ideas behind the design of this term import the theory of flux limiters
(Refs. 4-6). Essentially, the term applies precisely the correction needed
to limit overshoots or undershoots at each mesh.cell. That is to say, it
is a form of artificial viscosity which has a spatially varying
coefficient. This is in strong contrast to the more classical methods
which apply excesses of smoothing through the use of artificial viscosity
terms having globally constant (and problem dependent) coefficients.
Mathematically, it removes from the modified partial differential equation
(the p.d.e. solved exactly by the numerical scheme) the term which is
responsible for producing overshoots/undershoots. The result is a scheme
which captures shock waves with high resolution and compares favourably
with alternate schemes based on approximate Rieann solvers (see e.g Ref.

7), which are camputationally more expensive. Clearly, the many production
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codes used in industry, employing the MacCormai.k nmethod, can be modified

quickly and simply to yield a high resolution scdeme.

Various different flux limiters can be used, some of which are more -,

compressive than others (Ref. 10,11); or, artificial compression
techniques can be applied explicitly, in conjunction with any particular
limiter (Ref. 9). The paper will describe work %.hich has been done to find

the most suitable flux limiter for use within 'he TVD MacCormack scheme.
Some results of our numerical experiments will I... presented, together with
results for practical applications of the methd to high speed external
aerodynamic flows. A sample of computed solutions are shown in Fig. 1.
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BV discontinuous solutions of problems of the calculus of variatiois
and of quasi linear hyperbolic differenatial equations

Lainberto Cesari
Departincitt of Mathematics

University of Michigan
Ann Arbor, MI 48109, USA

1. BV functions. In 1936 I introduced [1] a concept ,,f BV functions, or functions of
bounded variation f(x), x = (xi,. ,), E G C I', f E L (G), t' > 1, in a domain G of
IR'. I proved, among other results, that f is BV if and only if the nonparametric possibly
discontinuous surface $ : z = f(x), x E Gqas finite generldized Lehcsgue area L(S).

Krickcberg in 1957 proved that f is BV if and only if f E Ll(G) and f has first order
partial derivatives in the sense of distributions which are finite measures pi, j = 1,. , .
Thus, a BV function f(x), x = (x,1 ,... ,x,,) E G, has distributional parti;d derivatives ipj,
j = 1,. vi', which are finite measures, as well as generalized partial deriv-atives Dif which
are Ll-functions.

In 1966 Conway and Smnoller considered the Cauchy pro)blei for cttasi linear hyperbolic
equations (conservation laws)

u, + Z(F(u)v, = 0,
(o)i

u(OY) = ,(y),

u scalar, x > 0, y = (Yl,-. , Y,) E IR, and other more gt eral problemns, and proved that
whenever the Caudiy data are locally BV in I', then th. equation has exactly one scalar
weak solution u(x, y), x > 0, y E R', which is locally BV ii i R+ x It" and satisfies a suitable
entropy condition.

2. Calculus of variations in classes of BV functions. In 1986 Cesari, Brandi, an(d
Salvadori [Sabc] considered integrals of the calculus of variations of the gencral form

(1) I(u) = JG fo(x,

x = (x,...,) E G C R', u(x) = (ul,...,u,,,), v > 1, In > 1,

mad corresponding Serrin type functionals J(u), in classes of BV possibly discontinuous
vector functions u. The Serrin functional J(u) is obtained as usual by taking lower limits
on the values of I on AC, or W 1, (C) functions, process which is similar to the one with
which Lebesgue area is defined. First, we obtained closure and lower closure theorems,
hence theorems of lower semicontinuity in the L1 -topology, and finally existence theorems
of the absolute minimum of J(u) in classes of BV vector functions u(x) = (ul,...,u,,),
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x E G C IR", whose total variations V(u) are equibounf hod [5abc]. We proved also that
I(u) _< J(u), and that 3 is a proper extension of I in the sense that ,(u) = I(u) for all it
which are AC, or IV,'(G).

3.Existence of BV possibly discontinuous absolute ininima for certain integrals
without growth properties. Recently I considered [4a] multiple integrals of the forim

I(u) = GZZ~jxu)Ijz + Vi(X, 101 dxr,
(2)

,,(x) =(u,,.. . ,u), x =(x,,...,x,) E Gc IR.,

u(x) =w(x), x E B C OG,

and associated Serrin functionals 3(u). J studied these integrals in classes of BV vector
functions u(x) = (u 1 ,... ,urn), x E G, with equibounded total variations. Here the Uij are
given functions of class C' arid the Vi are given locally Lipschitzian functions. The existence
theorems we mentioned in no. 2 above, and we had proved in [5c] (to not apply directly to
the integrals (2). However, I proved in [4a] that the same integrals I(u) und J(u) can be
transformed into integrals H(v) and "t,(v) to which the existence theorems in [5c] apply.
Thus, I could obtain the expected existence theorems for the absolute minimum I(u) and
J(u) for BV possibly discontinuous vector functions i, anl of course 0 < I(,,) < J(u).

In [4b] and in [4c] I also studied a number of variants of the Serrin functional 3(,')
associated to the integral 1(u), namely, functionals J'*(v), J**(j) I proved the needed
properties of lower semicontinuity in the topology of L1 , a d the basic relation 0 < 1(u) _<
J**(u) :5 J*(u) _< J(u). It is clear that whenever we can prove that for the optimal solution
u we have I(u) = 0, then ,, is a solution of the differew ial system -j=> WUi(x, u)]1. +
Vi(x, u) = 0, i = 1,.. - , m, xz E G (a.e.)

4. Rankin-flugoniot type properties in terims of the calculus of variations and
BV solution

For r7 = 1, v = 1, we are dealing with the original inlgral

(3) 1(u) IU' + (F(u)) I dx dy, Gc R2

x, y, u, F scalars.
If u has a line r : y = e(x), a < x < b, of class C' and of jump discontinuity, say

U2 (X) = U(X, t(X)+), u(x) = u(x,((x)- ), a < x < b,

then, under mild assumptions, the contribution of r on the value of the Scrrin type functi, I
.* is > 0, and such a contribution is zero if and only if

[u2(X) - u,(X)Ie'(X ) =F(u 2(x)) - F(u,(x)),  a <x <b,

along the line r (Cesari [4c]).
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For in = 1 v > 1, we are dealing with the original integral

(4) 1(U) =Iu, + Z(Fj(u)), J dx dy, GC Ift ', dy =dyi . y,
j=1

" ~x,u scalar, u(x,y) = u(.x,yl,... ,y,,), F(u) =(F,,... ,F,,).

If u(x, y) has a surface r = L(y) = L(yi,... y,), y E D, of class C' and of juml)
discontinuity for u, say

u2(y) = u(L(y)+, y), itI(y) = u(L(y)-, y), y = (yi,.,y,,) E D,

then, under mild assumptions, the contribution of r on the wlue of the sainc Serrin type
functional J* is > 0, and such a contribution is zero if aid only if

U2(Y) - UI(Y) = E(L(y)),,, [F(u.2(y)) - Fij(,, (yi))] Y E D,
j=1

on the surface r (Cesari 14c]).
For ?n > 1, v = 1, we are dealing with the original iiegral

I(?) = (P I i,. + (11))VI (.x dy, c W,(5) =

x, yscalars, u(x,y) = u(vlI,. .. ,u,), F(,) =(F,,...,F..

and in this situation we must uise the Serrin type integral J**. Let us assume tha.t for a
given i = 1 .... , the component ui(x, y) of u has a line 17 : y = r(x), a < x < b, of class
C' and of jump discontinuity for ui, say

U.2(x) = ut(X, (x)+), , I(x) = i, (X, ((X)-), a < x < b,

while the remailning components uh(.x, y), h = 1,.. , m, It 3 i, arc continuous in a ii'igli-
borhood of 1. In this situation, let us take

, 2 )(X) =(U,(X, e(X)+); ,h(X, £(X)), h 3 i, h = 1, . ,

u(i1)(.) =(ui(x, e(x)-); u,(X, f(x)), h i, , 1,h,,,,), < x < b,

I proved in [4c], under mild assumptions, that the contribution of r on the value of the
Serrin type integral 7** is > 0, and such a contribution i!; zero if and only if

A [ui 2 (x,) - u i(X)] C'(X) - F (u(i'2)(x)) - Fi(u(i')(x)), a < x < b

6along r (Cesari [4c]).
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5. Existence of BV discontinuous solutions of the Cauchy problem-for certain
hyperbolic differential systems.

Let m > 1, v = 1, let F(u) = (F,...,)Fr)be oflass C in It m , and let the functions
w(y) = (wi.,... ,w,,), y E It, be bounded and locally BV in It, say lwi(y)l < M in R,
and V [w (y), -M y5 M] <H = 1,... ,m. Let L be a Lipschitz constant for F in
[-M, M]m . Let R, T be arbitrary constants with LT < R, and let G = (0 <x_ z < T, -R +
Lx y 5 R - Lx]. Then, there is a vector function u(x, y) = (ul,..., urn), (X, y) E G, with
Iu,(XY) - M, V1(u) : HT, V(u,) < LHT, satisfying

u,, + (F-(u)), = 0, (x,y) E G (a.e.), u(xy) = (ul,...
uj(O, y) = wi(y) a.e. in [-R,R], i = 1,.,r

X, y scalars (Cesa'i and Pucci [6b]).
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We are concerned with the convergence of the Lax-Friedrichs scheme
and Godunov scheme for the system of isentropic gas dynamics. The
Cauchy problems in the Lagrangian coordinate and the Eulerian coor-
dinate are respectively

{U. + P(V) = O,P(v) < 0

Vt - UZ= 0,

(is,v)l=o = (UO(X),Vo(,)),

and
Pt + (PU) = 0,
(pu)t + (Pu- --P(p)). = 0,p'(p) > 0,

(p,,,)1t=o = (po(X),Uo(X)).

where po(x),uo(x) and vo(x) are bounded measurable functions. For
polytropic gas, p(v) = k 2 v - , where - > I is the adiabatic exponent.

Nishida t11 established a global existence theorem wit h arbitrary data
of bounded variation y = 1 by using the Glimm scheme [2]. To the
case y > 1 which is of more importance, many studies have been made
provided the data Satisfy certain mandatory restrictiom' [3-61. In 1983,
DiPerna (7] established a large data existence theor.in for = 12

2m+1 ,m > 2 integers, by using the viscosity method atid the theory of
compensated compactness [8-11]. Since technical reasoits, the results all
were obtained provided that the initial density is away from the vacuum,
namely, ps(z) : Co > 0, or vo(z) < '.

The Lax-Friedrichs scheme and Godunov scheme are finite difference
schemes proposed by Lax [12] in 1954 and Godunov [131 in 1959 respec-
tively. For scalar conservation law, Oleinik [14] and Conway and Smoller
(151 proved that the Lax-Friedrichs difference approximations satisfy the
Helly compactness principle and obtained the convergence of the scheme.
For Cauchy problem of system of isentropic gas dynamics with the ini-
tial density containing the vacuum, it is plausible that one can't expect
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to prove that the approximations, especially the Lax-Fri,,richs and Go-
dunov difference approximations, satisfy this compactne.is frame based
on the analysis of Liu and Smoller [161. One needs to fin1d a new com-
pactness frame which is satisfied by the Lax-Friedrichs and Godunov dif-
ference approximations and still ensures the existence of s subsequence
converging pointwise a.e.. Recently, Ding Xia-Xi, Luo Pei Zhu and I [17-
191 have found such a compactness frame satisfied by the iax-Friedrichs
and Godunov difference approximations for the Cauchy problem 13, 4]
and, for I < -y < and the initial density containing the vacuum, still
ensures the existence of a subsequence converging pointwise a.e. on the
basis of the work of DiPerna [7, 201 with the aid of the theory of com-
pensated compactness (8-1 1). Therefore, we obtained a global existence
theorem with arbitrary data. Furthermore, we [211 have introduced a
generalized Lax-Friedrichs scheme and Godunov scheme for the inhomo-
geneous equations of gas dynamics (withi the sources) and established
its convergence theorem.
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NUMERICAL SOLUTION OF STATIONARY EULER EQUATIONS
WITH TILE HELP OF TILE SPLITTING UP METHOD

S.G. Cherny
Institute of Theoretical an Applied Mechanics

USSR Academy of Sciences
Novosibirsk 630090

USSR

Aerodynamics is one of the important fields of application of the theory of hyperlolic
systems. The hyperbolic systems of quasilinear equations are widely adopted for predicting the
unsteady and steady supersonic flows of compressible gases.The deriving of analytical solutions of
these equations entails insuperable difficulties especially in three-dimensional problems. In this
connection the use of numerical methods advances to the forefront. However, the constructin of
efficient numerical algorithms for solving the gas dynamics equations remains an urgent problem
of computational aerodynamics.

The present study is devoted to the construction of a new efficient marching algorithnit for
solving the steady Euler equations.

Consider a system of three-dimensional equations of gas dynamics in cartesian coordinates

, OX

where J, = B11 + B12
/\/0 61 6 2' 63'

Vt1~ 0 0 0 0 6 11/ L
1= v2, BI ?t, 1, B12= 0 0 0 0 1 /0V3 0 0 0 0 :1 /o

P b (,c2  2ec 2 b3tc 2  0

b-' , ,c is the acoustic velocity.

Assume that v, > c. Then x, is the marching coordinate along which the numerical integration
of equations (1) is carrie(l out.

Approximate a system (I) by an implicit difference scheme

+1 I _ fn 3 Bn+'Aifn+l = 0 (2)hi +1=2t ~i"J

where n is cross-section number in the z direction.
For implementing the nonlinear difference equations (2) we shall consider an iterative scheme

f+ _ f P -. f f 3

, 1, 1 + 12 h--- -- -Afv+" = 0. (3)
1=2

Here v denotes the iteration number in the n + I-th marching cross-section.
Write down the scheme (3) in a canonic form

fV+l - ft

5 0 " (4 )
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where C' = (B' + h E BA,)
1=2

l.VL -
fJ) 3= B , + E B A'f v) .

1=2

After an approximate factorization of the operator Cv:

CL, P (B', + hl3 lA2)(8lT )-'(B',' + hiB'2A2)(B' ) -'(B" + h, Bav )(lBvl)-'(Bvl + Itl/B." A3)

the scheme (4) is replaced by a scheme in fractional spets

( 13v, + h,/Bv A2) v+1/4 = _I.Vl

(Bv,' + h, B"2 A 2) E,+2/ 4 = B' 1 Ev+1/ 4

(l?' + hIB31 A 3 ) ,+3I 4 = B 1  m+2/4 (5)

(3L' B + iB"2 A3 ) '+' = B' v+3/4

fv+l = fv + hi E+l

Its solution at each fractional step is derived by scalar sweeps or a scheme of running
calculation.

It is shown an absolute stability of the iterative scheme (5) and its convergence I-) the

solution of the implicit scheme (2).
It is proposed a version of scheme possessing a conservativeness property aud having a

higher approximation order in xi.
The accuracy and the efficiency of the proposed numerical method is examined on the

problem on the interaction of an oblique shock wave and a plate. A good agreement if the
numerical solution of the problem with an exact one and a fast convergence of iteratio,,s is
demonstrated.
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Analysis of Saw-Tooth Instabilities on
Moving Gravity Surface Waves

Soren Christiansen
Laboratory of Applied Mathematical Physics

The Technical University of Denmark
DK-2800 Lyngby. Denmark

Surface water waves under gravity [WIl] constitutes a hyperb,,lic.
moving boundary problem. For the solution of such problems variois
methods are at disposal [Y2] . In some of them Laplace's equation (see
below) is solved separately: (1) by differential equation method
[CI.C2.H3.KI.OI.PI.Y2] or (2) by integral equation methods
(D2.H3.L3.L4.LS.L7.NI.N2.N3.S3,VI.Y2]. In [BI.ClHI.112.N3.01.S2.';5] and
notably in Longuet-Higgins & Cokelet [L7] it is reported that in the
course of the computation, when the equations are integrated forward in
time, a smooth surface curve may develop into a curve with A supterimposed
saw-tooth shape. The problem has been overcome by an artificial &moothing
of the boundary curve. We shall here try to investigate the wate, wave
problem, hoping to contribute to the clarification of the difficilties
mentioned.

We consider a two-dimensional water problem, 2v-periodic in the
(horizontal) x-direction, with horizontal bottom y = 0 with the y,-axis
pointing upwards (gravity g = I) and with moving surface curve y =
S(x.t). where t is time. Inside the region a 2v-periodic potentinl 4 =
(x.y.t) satisfies Laplace's equation A = 0. while *y = 0 on y .. 0. On y

n i the potential * satisfies well known boundary conditions [S6j. which
make the problem non-linear. By introducing *(x.t) S 4(x.-q(x.t),t). i.e..
the potential * evaluated on the moving boundary, the conditions on '-.e
moving surface can also be written

Tit - ityC.n.t) - nxC.t) 40X( .-q.t) 0 .

t H H - n(x.t) - .

0y(x.q.t) - 11 (x.t) ,X(x.,l.t) , (x,.,.t)
2 X y

where H is a constant.
For x :a x i E i 2w/N; I w 1.2..... N (with N even) the function

ni(t) : 'I(xi.t) and vi(t) := v(xi.t) are to be found. These functions

are combined Into one 2N-vector - -..... #N' N ..... '2N

T
URl ....,?N fl' e .... . The potential 0 is expressed by means of N
terms, each 2v-periodic. satisfying Laplace's equation and the condi ion
on y 0 0. and each with an unknown coefficient. These coefficients a.-e
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determined in terms of # by solving a system of linear algebraits

equations [14]. while the derivative qx is approximated in term of

(",)I . e.g. by means of periodic splines [13]. Hereby the quantities at

the right hand side of (1) are expressed in terms of #. and we isre

therefore led to a system of 2N ordinary (autonomous) differential

equations (ODE's) [L2]

#" - F(#)~ . (3)

For the analysis of such a system it is crucial to determite the
Jacobi matrix J. with elements JiJ - OFIlaj In the special cease where

.I 112 a . a = : q (a horizontal surface curve) and Vl 2 = .

VN (a constant surface pressure) the 2N x 2N matrix J has the form

, =(3)

where each of the submatrices are N x N. and the matrix N is circulant

[DI] and symmetric.
The matrix . (3). has the following N + I (imaginary) elgenvalues.

with L' a -1.

X ( o) 0 (4a)

X( k )  1k )  ; k = 1. 2. .... 2" (4b)

where

a(k) n tanhkq) (4c)

while . (3). has only 2N - I (complex) elgenvectors, indicatint. that the

matrix is defective (N4] It is perhaps not surprising that the

eigenvaluos are expressed in terms of a . (4c). which also esiters in
the formulas for infinitesimal waves on a horizontal surface [LI]. It is
more important that the absolute largest eigenvalues are the two with k =
/2.

Systems of ODE can be integrated numerically using various numerical
methods [1.2] [Yi]: each method is characterized by a region of absolute
stability [84]. Let X be an eigenvalue of a and h be the time step, then

If Xh is outside the region, the solution will develop a growing
component of the eigenvector corresponding to X.

In the present case the eigenvalues X(N/2) O = to(N I 2 ) have
eigenvetors which combine to a saw-tooth surface curve, described by
(11)i . With X being purely imaginary the integration methods do not

ereate saw tooth@, provided that the step length h satisfy 0 j IXh £ S.
or
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SS
- (5)(N/af"2)N

a N

2 tanh (p)

where S depends upon the method used. For example:
Adams-Bashforth-Noulton. 4th order (ABN4) in PECE mode [YI; p. ,158J: S =
0.92620161. cf. (84; Fig. 24) [TI: Fig. 4.2] .(For a related problem [FI]

1/2it is found that At a (Ax)l.)
Actual numerical calculations have been carried out using various

methods. in particular the method ABM4 (which was used in [L7]). with N =

36. With ; = I then hmax - 0.218308 according to (6).

The initial functions
1 + a sinx (6a)

* (a/4t-anh 1) cosx (6b)
correspond to a wave of permanent form travelling'to the right with phase

speed c a tAunh 1 . provided that lei is infinitesimal (Li]. From (6) an
initial vector can be derived by means of a sampling in x.

The value a = 0.01 is small enough so that the numerically computed
results follow what could be expected from the linear theory for a
horizontal surface curve: If h a 0.24 > hmax saw tooths will become

visible with an amplitude which is independent of x. but grows with the
number of timesteps as predicted, while for h a 0.18 < hmax saw tooths

apparently do not develop.
The value a = 0.1 is so large that the above results are not

applicable: If h a 0.24 the saw tooths again become visible, but now with
a large amplitude near the crest and a small amplitude near the trough.
This same feature is noticed from Figure 4 in Longuet-Higgins & Cokelet
[L7]. From this coincidence it is - of course - not possible to conclude
with certainty whether the saw tooths observed by Longuet-Higgirts &
Cokelet. and others, simply are due to an integration with a time step
which is too large. (Professor Jean-Marc Vanden-Droeck. Math. Res.
Center. Madison. VI. U.S.A.. is thanked for discussions relating to that
conclusion.)

The numerically computed evolution of a boundary curve may depend
upon which integration rule is used, whereby some aspects of thf, problem
under consideration may be blurred. Therefore it may be advantageous
directly to compute the Jacobi matrix by numerical differentiation (e.g.
by means of [11]) at a prescribed boundary curve and boundary potential.
and subsequently determine numerically [12] the oigenvalues and
eigenvectors for 1. (For a somewhat related problem (RI]. where Laplace's

equation is solved by means of a certain integral equation, a similar
computation has been carried out.)

Actual numerical calculations can reproduce, with high acctiracy. the
results (4). including the double eigenvalues. For other boundary curves
and/or boundary potentials, than those leading to (4). it is observed
that two opposite, double, purely imaginary aigenvalues are split into a
quadruple of simple etgenvalues. X a ± a ± LP . i.e. two with positive.
and two with negative real part. (A similar splitting is reported in
[Ri].)

The theory for two-dimensional water wave problems states that waves
can travel with a permanent form with a certain phase speed, and that the
waves are stable to superharmonio perturbations provided that the waves
are not too high compared to the wave length (L6.NI.81.ZI]. The permanent
form corresponds to certain functions q and V. for t n 0. If however. for
t = 0. such functions -q and V are chosen, which do not correspond to a
permanent form. there will be a change of form, which may be obtained
when some components are growing, corresponding to eigenvalues with
positive real part. At a later stage the growing components may turn into
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decaying components. Therefore. when waves of non-peranent forum evolves.
it may be accompanied by eigenvalues with positive real part. (11r. Ulla
Driach-hlielsen is thanked for discussions leading to that conclusion.)

Therefore the following questions arise concerning the eigenvaluem
with positive real part;
(1) Do these elgenvalues Indicate a genuine Instability Inherenit In the
system of ODE's?
(2) Do the original system of PDE's possess Instabilities?
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DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR

NONLINEAR CONSERVATION LAWS
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Solutions of scalar nonlinear conservation laws are calculated by using discontinuous finite
elements. First order schemes are obtained with piecewise constant approximations, while higher
degree piecewise polynomial qproximations give higher order schemes. On the boundary of the
discretization cells, numerical fluxes are calculated by using one-dimensional Riemann solvers.
Special attention is given to the piecewise linear case for which truely multidimensional slope
limiters are defined.

1. Introdiction

Recently there has been a large activity to design and analyze "high resolution" schemes
for nonlinear hyperbolic conservation laws and one can find many references in the proceedings of
this conference. In this paper we propose to use the discontinuous finite element method for such a
purpose.

It is a finite volume method where the volumes considered for mass balance me the cells
of the discretization themselves. Inside a cell polynomials of arbitrary degree can be used, and on
the boundary the numerical flux is calculated by using Riemann solvers in the normal direction.
Actually we consider only the case of piecewise constant and piecewise linear approximations. The
latter yields a higher order scheme which has to be stabilized by a slope limiter that is a
multidimensional extension of Van Leer's one [10].

The linear version of the discontinuous finite element method have been first analyzed in
[8] and more recently in [7]. The nonlinear version has been used in reservoir simulation [2], [31
and is presented and analyzed in the one dimensional case in [1],[4]. It is also closely related to the
MUSCL scheme analyzed in [9].

We consider here the scalar nonlinear conservation law

(1.1a) au/at + dlv f(u) = 0, x c E n,

(1.lb) u(xO) uo(x), x 4 Pfn

given TJO, 1] --, pn and u0 : Rn -. [0, 11. The extension of the method to the Euler equation is under
way using a field by field decomposition.

2. One-dimensional sgace annroximation

Let us denote by ... < xi. 1/ 2 < X1+1/ 2 < ... andby K() = I x1 . 1 2 ,x1+1 l 2 [ , IZ

the points and the intervals of the discretization of R. The measure of K(l) is h * xi+ 1/2-X- /2.

We introduce the approximation space Vk of functions which are discontinuous at the discretization
points and restrict to polynomials of degree k on each interval K() and vL1 * 1/2' vRj+I 1 2 and i

denote respectively the left-handed and the right-handed limits at xi+ 1 / 2 , and the mean vadue over

K() of a function v in k.
The approximation equation is obtained by multiplying equation (1.1) by test functions

in Vk, by integraing over the intervals and by integrating by parts the term c6ntaining the derivative
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with respect to space. Thus the approximate problem consists of seeking uh E Vk solutioln of

(2.1) fK() (auh/at) v dx -fK(1) f(uh) (av/ax) dx +

FI+1 / 2 vL 1+1/ 2 - F.I_ / 2 vR1 - 1_/ 2 - 0, for vIVk , icZ, t > 0.

The numbers FI+ 1/2, IEZ are numerical fluxes which are functions of th, two limit
values at the discretization points and are calculated by means of exact or approximalw Riemann
solvers [5], [6].

Note that for k - 0 scheme (2.1) reduces to the first order finite difference scheme

du 1/dt + (Fi+1 / 2 - F 1 /I2 ) / hi  0 0, lcZ, t > 0,

and that, for k > 0, conservation equations are obtained by taking for v in (2.1) the characteristic
functions of the intervals.

For k ) 1 scheme (2.1) does not have good stability properties and the calculated
solution oscillates. To stabilize them, we extend to the discontinuous finite element method the
notion of slope limiters already introduced by Van Leer [10] for finite difference schemes. We now
denote by u*h(t) the function satisfying (2.1) and we impose on uh(t) to satisfy

(2.2) CfK(l) Uh(t) dx) / hi =-uE(t) = u lt),

in order to preserve mass balance, and

(2.3a) (I -0)u-(t) - aMln(u1i _ 1 (t),(t)) ( uR i1/ 2 (t) ( (1-0cU'l(t) + o(Max(u i _ i(tj(t))

(2.3b) (1 -o)U(t) + c(Mlin(u(t),u- 1 1 (t)) ( uL 1. 1/ 2 (t) ( (1 -oou(t) + cMax(u(t),u-14 I(t)),

(2.3c) 0 c( ,

(2.4) Uh(X) Eul for x K() if u,) Max(u1- 11i,I ) or u" ( Min(UiIUj+ I

to limit the slope of Uh. Since uh(t) is not uniquely defined by (2.2-4), one can also impose for
instance that uh(t) be as close as possible to u*h(t) with respect to the L2 norm.

The parameter oa controls the slope limitations and the corresponding added numerical
diffusion. In the case of a piecewise linear approximation (k- 1 ), when (x - 0 the slope limited
solution is piecewise constant so it is the strongest possible slope limitation; then we are taken back
to a first order finite difference scheme and the added numerical diffusion is maximum. On the other
hand, the larger cx is the looser is the slope limitation and the smaller is the added numerical
diffusion.

Note that in such a formulation, the slope limiting process is a step distinct from the
finite element calculation. This makes it easier to design various time steppings - explicit, implicit,
higher order [4],[1 1] - since they will affect only the latter, and to extend the method to the
multidimensional case.

A crucial point for the method to be computationally efficient is to choose the adequate
integration formulas in eq. (2.1). For example, in the case k- I and of first order backward
differencing in time, numerical experiments have shown that the trapezoidal rule for the integral
containing the derivative with respect to time and the midpoint rule for the integral containing the
derivative with respect to space is the best choice while more precise formulas give more costly and
not as nice results.
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3. Multidimensional space anproximation

We consider a regular discretization of the domain fQ with n-simplices and , rectangles
K c Th of diameter less than or equal to h and we define the approximation space V1 of functions
which are discontinuous across the interelement boundaries and which restrict to P1 polyn omials on
the n-simplices or 0 1 polynomials on the n-rectangles. The degrees of freedom of functions of V 1
are, element by element, their values at the vertices. We denote them VK, A with KE 1h and A a

vertex of K.
Another choice is possible in case of a structured mesh of rectangles: one can still take

p I polynomials (instead of a 1) in the definition of V 1. A convenient choice of the degrees of
freedom is the average value of the function in the element and its slops in the directions parallel to
the axes. Then a multidimensional scheme is obtained by writing the one-dimensional scheme in the
directions parallel to the axes. This is what is done usually in higher order finite difference schemes
but this is not what we can call a truely multidimensional scheme.

As in one dimension, we calculate uh E V I in two steps: a finite element calculation
giving a predicted solution u*h c V 1 followed by a slope limitation yielding uh. The finite element
calculation consists in solving the following equation:

(3.1) AK (au*h/at) v dx -K f(Uh) gradv dx + AM F vd = 0, for vEV 1 , KETh ,

where the numerical flux F defined on the edges of the mesh is calculated as follows.
First we note that the integral over aK is the sum of integrals over three or four edges.

Any integral over an edge E will be calculated by means of an integration formula

fE F v dI = Z1=l,npt 1P F(P1 ) v(P1 ),

where npl, p1I, P1 denote respectively the number of integration points, the weights and the points
of the integration formula.

. Then we note that the numerical flux F is an approximation on the edge E of the quantity
F7 where is a unit normal to the edge E. Therefore it is legitimate to calculate F(P 1 ) by solving

the one-dimensional Riemann problem in the direction of , relative to the function T(P1 ). " and to

the initial data the two limit values u(Pi )+ , u(P 1 )- of uh at the points Pi. Thus F(P 1 ) is calculated

by the same formulas as described in section 2.2 for the one-dimensional case with u(Pj)-,

U(Pi ) , N. replacing respectively uL 1+ 1/ 2 , uR1 1/ 2 , r.

We formulate now a multidimensional extension of the one-dimensional slope limiter
(2.2-4). For any element K c Th and any v E V I we introuce the following notations:

nv(K) number of vertices of K,

T(A) . (K Th I AisavertexofK 1,
"- nv(K)
VK [ vK I / nv(K) - average of v over K.

VK "( A, I l,nv(K),
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nv(K)
JK(VK) I = ;1 (VK,A -  K,A1) ]/2.

JK measures the distance between v and u*h inside the element K.

The slope limited function Uh must have the same cell averages as U*h to preserve mass
balance and its degrees of freedom will satisfy inequalities similar to (2.3),(2.4). This can be
achieved in the following way. Given u*h obtained from (3.1), we calculate for any veitex A of the

discretization the minimum and the maximum of the averages in the cells surrounding A:

UMIN(A) =KN1A)M '  u UMAX(A) - ) UK

Then uh is obtained by solving the series of minimization problems:

Find uh E V 1 such that for all KE Th UKE PKnOK and

JK(UK) Mn J,(VK),VKPKnQK

where PK and OK are respectively the following hyperplane and hypercube in Rnv(Ki.
nv(K)PK = I cnvK i x I  nv(K) u K

nv(K)
OK -- 1PI [K -x) UK + x UMIN(A 1), (1 -x) U K + a UMAX(A 1 .

It is easy to check that each minimization problem in K has a unique solution which can be

calculated by dualizing the constraint VKEPK and solving the associated saddle point problem 12].
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A METHOD TO GET CORRECT JUMP CONDITIONS FROM SYSTEMS IN

NONCONSERVATIVE FORM

by J.F. Colombeau

Engineers use systems in nonconservative form to
represent shock waves. Numerical experiments show that these
systems have indeec such solutions; however,from the theoretical
viewpoint,they do not have discontinuous solutions in the sense

of distribution theory.

A theory of generalized functions which was developed to
give a meaning to all products of distributions([1,2], and (3,41

for more recent presentations), can be used to master
mathematically discontinuous solutions of sucti systems. The
equations have to be formulated in this theory. If one adopts
the weakest formulation (corresponding to the concept of a weak
solution in the distributional sense )then,in contrast with the
conservative case,one gets in general an infinite number of
possible jump conditions,depending on a parameter which has a
physical significance.

To resolve the ambiguity this theory suggests to sLate
the equations of physics in a way more precise than usual on the
shocks:one postulates that the basic laws of physics still hold
in a strong sense even in the infinitesimal space-time regrion
in which the jump takes place,while the constitutive equations
are not assumed to holi in this region.In basic cases this
method gives nonambiguous jump conditions and then they agree
with the results of experiments.

Unexpectedly this method can also be used for a new
insight (offering new numerical methods)into classical
conservative systems such as fluid dynamics:one can -within this
mathematical theory- transform systems from a conservative form
into an equivalent nonconservative form,whose numerical
treatment c'an be easier(recall the well known fact that formal
manipulations, which are valid in the case of smooth flows,can
alter the jump conditions in the case of shocks ;therefore these
transformations are not obvious).

The aim of this talk is to present this method very
clearly on four examples: elasticity (system with density-

velocity- stress given in nonconservative form), fluid dynamics
(system with density- velocity - pressure- energy given in
conservative form), elastoplasticity and shock waves in viscous

media
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Formulas such as Y8=(1/2)6 " (Y=Heaviside function)
have been used since long time by physicists and

mathematicians.They give correct results in some basic
circumstances (in fact the simplest , and so ,the more important

ones ). The genuine difficulty lies precisely in finding the

situations in which these formulas hold and, in general , in

finding the correct conditions.

1 J.F.Colombeau: New generalized functions and multiplication of

distributions. North-Holland 1984.
2 J.F.Colombeau: Elementary introduction to new generalized

functions.North-Holland 1985.
3 E.E.Rosinger: Generalized solutions of nonlinear PDE.
North-Holland (Math. Studies 144),november 1987.

4 H.A.Biagioni: Introduction to a nonlinear theory of
generalized functions (200 p.) Preprint series Notas de

Matematica .State University of Camplnas UNICAMP, Campinas,

Sao-Paulo ,Brazil.
Some results in the talk can be found in:

5 J.F.Colombeau,A.Y.LeRoux: Multiplications of distributions in
elasticity and hydrodynamics.J.of Mathematical Physics ,to

appear in february 1988.

Two related trends of works not developed in this talk:

This theoretical method leads to numerical methods;some
of them are to be found in
J.F.Colombeau,A.Y.LeRoux:Numerical techniques in elastodynamics.

Lecture Notes in Math.1270. Springer, 1987, p.103-114.
------------------------ :Numerical methods for hyperbolic systems

in non- conservative form .Advances in computer methods 6,IMACS

1987,p.28-37.

This mathematical context provides solutions of the
Cauchy problem in cases in which there is no distribution

solution:

J.J.CauretJ.F.Colombeau,A.Y.LeRoux:Discontinuous generalized
solutions of nonlinear nonconservative hyperbolic equations. J.

of Math. Ana. and Appl.In press.
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J.F.Colombeau,M.Oberguggenberger:Hyperbolic systems wil~h a

compatible quadratic term :generalized solutions, delta waves,

and multiplication of distributions.

M.Oberguggenberger:Generalized solutions to semilinear hyperbolic

systems. Monatshefte fur Math.103,1987,p.133-l44.

---------- :Hyperbolic systems with discontinuous
coefficients; examples.Proceedings GFCA 1987. Plenum Pub. Comp.

in press.

-------; generalized solutions and a transmission problem in
acoustics.

U.E.R. de Mathematiques et d' Informatique, Univeisite de
Bordeaux 1, 33405 TALENCE ,FRANCE.
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UNIFORMLY HIGH ORDER CONVERGENT SCHEMES
FOR HYPERBOLIC CONSERVATION LAWS.

F. COQUEL & J. CAHOUET
Research Group

Laboratoire National d'Hydraulique, E.D.F.
6, quai Watier 78400 CHATOU FRANCE.

Some years ago, Leonard ([1],[2]) derived a difference scheme using an original technique
in order to combine monotonicy and high order accuracy. Based upon the attractive 5-point linear
scheme Quick (31 without real theoretical frame, this scheme gives however remarkaibly sharp
profile for the linear advection equation. It was the investigation ! this scheme and associated ones
([4]) which prompted this work.

We consider numerical approximation of the weak entropy solution of the scalar equation:

ut + f(u)" = 0 0<t_<,T(1)
( u(x,O) = u0 (x)

We present a systematic procedure to modify 5-points linear schemes such that convergence
towards the weak entropy solution of (1) can be established while high order spatial accuracy is
achieved even at non sonic critical points. Our method might be described as a simple modification
of T.V.D. schemes which preserves BV r) L- stability, entropy stability being achieved following
Vila's ideas ([5],[6]). Having developed a suited procedure to check T.V.D. correction, we will
state in a second part , precise results concerning the construction of uniformly high order accuate
convergent schemes. Then, we derive several schemes based upon the Quick scheme which
enligthen, in some extents, Leonard's approach. Details ;f o'cofs are provided in [ 12].

1. T.V.D. AND ENTROPY CORRECTIONS OF S-POINT LINEAR SCHEMES.

Let denote hnj+1/2 the numerical flux associated with a 5-point linear scheme. Restri -ing
ourselves to E-schemes ([7]) which behave like the first order upwind scheme away from ;onic
points, we may write, before T.V.D. correction:

0 E n +lnJ=/ gj+1t2 + a+1/2

In order to achieve Bv n Lr stability, we must "limit" the antidiffusive flux
nI

a - Iv I q Au!'j n
Sj+I/2 uJ+1/2

J+1/ 2

where
-112 f(u") A 1/2n

= and i/ - if V. >
ufj+/ 2  A1

J+1 2 A"+1/2
h! f(un1  +___n= + and r2 if V < )

nj+ J+/ J+1/2

with the usual notation v=4 Jfi 2

Au!

|. The reduced flux qj+la, thanks to the consistancy of hnj+1/2 with f(u), only depen, s. on

"nj+l/2 through a linear relation. This suggests to replace mj+1/2 by a suited function y(r) whose
restriction to "smooth regions" is q .j+lf2 . Owing to the set of sufficient conditions deriv d by
Harten ([8]) and Vila, ensuring the BV and L" norms decay, we can prove:



Theorem 1 : Assume that (p(r) satisfies:

(3(M,g) e R: x [-1,01 )/(Vr E R g5qp(r)<M and -MS5 -r l+)
+ r

Then the corrected flux
n En n

hr = E + a/
whereJ+/1/J+2

J ajn1/2  - 0 near a sonic point1 n

nfl = v A u otherwisej+ j 2 /2 ' j+1/2

rJ+1/2

defines a T.V.D. scheme, which preserves LOO nom I

There is therefore, as the mesh size Ax tends to 0, a subsequence in L'i0 c converging
towards a weak solution of (l).To achieve a good entropy production for the limit solution, we
slightly modify the corrective antidiffusive flux according to Vila's ideas (151,161). Thus if one
enforces aj+12 to vanish with the mesh size, we obtain

Theorem 2: The following correction of the antidiffusive flux
ajn/2 -- sgn ( ai ,!12 ) Min ( C Ax" 0 wit C, R*x10,Ign1 1 )Mm ( x , Ia1~1/2l ) with (C oa) E +~ 1]0,1

ensures the entropy convergence i

Notice that

VA>0) (3C>0) /( an a/ in any region where IAuj 0 9 A Ax)

so that the resulting scheme is still high order accurate everywhere except at the critical points
where T.V.D. property makes it necessarily degenerate into first order accuracy ([7j).Th: perpetual
damping of local extrema leads the error to be O(Ax) in L- norm.

2. UNIFORMLY HIGH ORDER CONVERGENT SCHEMES.

To overcome this main drawback, Harten and al (19], 1101) have introduced ihe E.N.O.
schemes of globally high order accuracy in smooth regions. At this time, convergence estimates are
unavailable but numerical experiments enlighten their extreme stability. Quite recently, Shu ( 111 )
has proposed a Total Variation Bounded (T.V.B.) modification of some existing T.V.D. schemes
involving the classical rin-mod function in such a way that high order spatial accuracy is achieved
including at critical points.

We present here a systematic procedure to convert 5-point linear schemes into convergent
schemes( i.e. BV c L0 and entropy stable) of uniformly high order accuracy in space. As for Shu's
approach, there is a price to pay for this extra-accuracy ; namely the loss of the monotonicity
preserving property. However, the following estimates can b- performed:

J I Oil U II o  + O(Ax2 )L" L" for 0!5 n At !5 T

.TV(u n ) S TV(u 0 ) + O(Ax )

Theorem 3 : Assume that there exists ( a,b ) e R*+2 such that the reduced flux Po,o( r) ( Fig.l )
provides a scheme which preserves BV and L" norm under the C.F.L. condition:

max I v"j+inl213
Then for any M' and M" > 0, the scheme associated with the reduced flux 4M',M" (Fig. 2) is

SVr-.' stable in 0!5 t 5 T under the same C.F.L. condition i
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The main idea underlying the proof is to obtain as Shu did, the following key estimate:

hMn.M jl2 h.0 0 It2 + d! /2 where I dj 1 1 : BAx 2  finanyn,j.

Then we ensure entropy stability as previously pointed out.

Theorem 4 : For any D > 0 , there exist M' and M" > 0 such that the scheme is high order
spatial accurate in any region where derivatives of u are bounded by D (except at sonic points) I

3.APPLICATION TO QUICK SCHEME AND NUMERICAL RESULTS.

Under the latter guidelines, we present several convergent corrections of the attractive third
order accurate Quick scheme ( [3] ).The formal extension of modified Exquisite scheme ([4 1) to
nonlinear hyperbolic scalar equations is shown to be T.V.D. Since its reduced flux suffers from

a lack of symmetry { * q(*-) , ,another T.V.D. correction is designed to get this property.

Actually , Quick is modified in order to give a uniformly high order acurate scheme which justifies
in some extent the Euler-Quick scheme ([1],[21).

For steady-state computations, a delta formulation ([13]) is used to speed up the
convergence process. The implicit operator is discretized in space with the full Donor-Cell scheme
and the explicit part uses previous schemes.

Theorem 5 : This implicit procedure preserves the total variation behaviour ( decay or
boundedness ) of the underlying high order scheme I

Numerical experiments are performed in order to compare the uniformly high
order convergent correction of the Quick scheme to the T.V.D. one. Numerical simulations of
unsteady and steady fluid flows containing shocks will be shown at the conference. An approach
allowing an easy extension to multidimensional system is described in ref [141 and applied to
multiphase flow simulations.

- NOMENCLATURE -

+y n s=" "- f(u)A&yj+lt2- Yj+t " Yj' gj+lt2 9( g~ lUj J J+1" A + -f( U7

At
Ax : Mesh size ; At : Timestep ; . -

Ax
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Reduced flux of the S-point linear scheme

WT.V.D. reduced flux

*a

Figure 1I T.V.D. reduced flux.

Reduced flux of the S-point linear scheme

-(a-M': 2) IT.V.B reduced flux

A2 I,
0-(- Ax2b+M"Ax 2 r1I.

Figure 2 :T.V.B. reduced flux.
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Grid Generation for General 2-d Regions Using Hyperbolic Equations

Jeffrey Q. Cordova
Steling Federal Systems

Palo Alto, CA

Timothy J. Barth
NASA Ames Research Center

Mofett Field, CA

A method for applying a hyperbolic grid generation scheme to the construction of meshes in general 2-d
regions has been developed. This approach is similar to that developed by Steger and Chaussee (1980) and
represents a generalisation of their work. The equations used by Steger and Chaussee arise from imposing the
constraints of orthogonality and volume distribution on the computed grid. These constraints can be relaxed
by introducing an angle control source term and this leads to methods for solving the standard problems
of hyperbolic grid generation. Novel applications of this approach include controlling the propogation of
singularities, preventing shock formation (crossing grid lines), and the generation of internal grids.

INTRODUCTION

Over the past decade, the scope of finite difference methods has been extended to include equation sets
posed on arbitrary geometries. This has been accomplished through the process of numerical grid generation
wherein the geometry is mapped onto a simpler domain and the transformed equations solved thesei. For finite
difference methods, the simplest domain is an n-rectangle (n = space dimension) and the grid gene;ation
problem consists of mapping an n-rectangle onto the domain of the equation set. Thus, the geometry is
represented as a deformed n-rectangle and the numerically generated grid as a deformed n-lattice.

A variety of algorithms have been developed for numerical grid generation. Among these are algebraic
methods, schemes based on solving partial differential equations and, optimization techniques. Many of the
methods currently in use ar documented in Thompson (1985). The discussion here will center on ing
hyperbolic equation& to generate two dimensional grids.

The notion of using hyperbolic equations to construct grids was first proposed by Steger and C tvissee
(1980). In this approach, an initial surface is propogated outward subject to spacing and arthog 'ality
constraints. In practice, this technique suffers from three limitations: (1) discontinuities in the initi .- data
are propogated, (2) shocks (crossing grid lines) may form and, (3) boundaries other than an initial surf eay
not be specified. The Art two of these may be overcome by strictly numerical techniques as demon 'ted
by Kinsey and Barth (1964). The contributions of this research are to show how (3) may be overco . and
to give another method for preventing (2). Both results follow as a consequence of including an angle ontrol
source tern in the hyperbolic equations.

ANALYSIS

Let (, V) --# (a, y) denote the mapping from computational space to the domain of interest (F g. 1).
This mapping will be generated based on the following equations:
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It x r,, = V. (1b)

Here, r = (z, y)t and 0, V are user specified angle and volume source terms respectively. These equations
reduce to the Steger-Chaussee equations when coeo = 0.

The structure of these equations is obtained from a local linearisation about a known state 30, y. This

results in the following 2W2 system:

Art + Bri = f (2)

where

A= -,r + 14 A1r + . )

f = (coo -coS& °, V + v)t.

A brute force calculation shows that B-1 exists when sine 6 0 and that

det B-•A = -Ir 12
det (B'1A) = -- I1= -aspect ratio squared

Tr (B-A) = o.

It follows that the eigenvalues of P -'A are ± aspect ratio. Hence, the system

r. + B- 1 Are = B-'f (3)

is hyperbolic and the local solution consists of left and right running waves.

The mixed problem for this set of equations consists of specifying initial data on 17 0 and boundary

data on f = 0 and C - C,... For the Steger-Chausse equations (cos0 = 0), this problem is typically ill-
posed because the boundary curves v# -- [z(j, q), yj, i)], I = 0 or f... need not intersect the initial curve
orthogonally. From the geometrical nature of this problem, it is clear that angle terms can be chosen so that

Eq. (1) is well-posed. An important detail in this matter concerns the specification of boundary conditions.

As the solution is locally characterised by a left and right running wave, only one piece of data may be

specificed on a = constant boundary. The second condition is constrained to satisfy the characteristic

relations.

ALGORITHM DEVELOPMENT

Following Kinsey and Barth (1984), we consider a one-parameter family of two-level methods for inte-

grating Eq. (3), vis
r +1 - rh = 1 ) !! + (4)

69
k - - .l



where rh = r(kA i). For a = 0, 1, and I this produces an Euler explicit, trapesoidal rule, and Euler implicit
integration respectively. Substitution of Eq. (3) into Eq. (4) leads to

r+1 - rh = (I - a) [B-1te - Art)] + a (B-'(f - At)] +, (5)
where B - ', A, and f are evaluated at the known k level. Rewriting this in delta law form and adding

fourth-order smoothing in f results in

[I + a(B-A)6( - e(VA)(] (r&+1 - ra.) = [B;(f - A61) + e(VA)IJ rk (6)

This discretisation differs from that presented by Steger and Chaussee in that a delta formulation is
employed, implicit dissipation is added, and a variable integration scheme is used. The latter option is used
to control shock formation while the other options are important in smoothing initial discontinuities. In
each situation, a bad solution is avoided by introducing extra smoothing at the cost of losing orthogonality.
This tradeoff between smoothing and orthogonality can be unacceptable for severe geometries. In that case,
a better strategy is to control local departure from orthogonality via angle specification. For example, this
technique prevents shock formation by forcing initial fronts straddling a concavity in the data to propogate
away from each other. A more detailed analysis of these features as well as formulas for the source terms is
given in the full paper.

The boundary conditions for the mixed problem are theoretically obtainable from the characteristic re-
lations. In practice, these proved to be too complicated and were replaced by boundary conditions consistent
with the local form of the solution. For a left boundary these are

i. (Ari=1 - 2Ari= + Ary_-) = 0 (Ta)

. ArL = 0 (Tb)

here Fis a unit vector tangent to the boundary curve and Ar. is the vector perpendicular to Ar. Note that
these boundary conditions are exact on linear data.

APPLICATIONS

Three applications are presented to demonstrate the algorithm described above. Other applications as
well as a more detailed discussion are presented in the full paper. The first example demonstrates the use of
smoothing and angle specification to control the propogation of initial singularities. In the second example,
grid lines are prevented from crossing by adjusting angle source terms at the initial surface. The last example
shows an internal grid. This was generated by solving a mixed problem and shooting to the outer boundary.

CONCLUSIONS

A grid generation algorithm based on a 2x2 hyperbolic system of equations has been developed for
constructing meshes in two dimensions. By adding an angle source term to the Steger-Chaussee equations
and following the Kinsey-Barth algorithm, the standard objections to using hyperbolic systems for mesh
generaton have been overcome. Novel applications of this approach include controlling the propogation of
initial singularities, preventing shock formation (crossing grid lines), and the generation of internal grids.
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A QUADRATURE APPROXIMATION OF THE BOLTZMANN COLLISION OPERATOR
IN AXISYMMETRIC GEOMETRY AND ITS APPLICATION TO PARTICLE METHODS

P IEc*1f. FJ tMUSTIEL ES 8 NICLO
Ecole Polytechnique, Centre de Hathematiques Appliquees
Unite de Rech. Associee Au CNRS-756, 91128 Palaiseau, France

This paper is devoted to a presentation of a new numericaL method for the
approximation of the non-linear Boltzmann equation.

In a first part, we present an explicit expression of the two-particle
Boltzmann collision operator in an axisymmetric geometry (for
distributions functions which are Invariant under the group of rotations
about a fixed axis), cf. [1]. Indeed, In numerous situations (study of shock
layers In gas dynamics, homogeneous field formalism In semiconductor
physics), such a geometric Invarlance is pres.nted and seldom used to
reduce the computational cost of the simulation. Our reduced expression of
the collision operator in axisymmetric geometry involves an Integral
operator. The integration domain of which has a lower dimensionality than
for the general Boltzmann operator.

We take advantage of this feature to propose a direct evaluation of the
collision operator by quadrature formulae. This Is in contrast to the usual
numerical methods which always rely on a Monte-Carlo procedure [2]. We
couple this new approximation method of the collision operator to a
particle method for the approximation of the differential part of the
Boltzmann equation, using the general ideas of P.A. Raviart and S.
Mas-Gallic (3,41.

This numerical scheme has been applied to different test cases, with an
emphasis on the verification of the momentum and energy conservation by
the approximate collision operator (cf. figures). It has also been employed
for a real case arising In semiconductor physics. Other tests are In
progress. The conclusions of the tests are encouraging for the
applicability of the method to other problems, cf 15).
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0(r) is the two particle Boltzmann collision operator. The
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solid line Is the solution after 200 time steps. We obtain a
displaced Maxwellian by the action of the electric field (E
IOs vm- 1 ) with a relative error about 5 .on the maximum.
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A Treatxlent 4if Disconthmuities in Shock Capturing
Finite Differoice Methods

Mao De-kang
Department of Mathematics

Shanghai University of Science and Technology

1. The partial differential equiation

We consider the following nonlinear hyperbolic equation of scalar conservation law

ut + f,(u) = 0 (1)

with initial value u(z, 0) = uo(x). Ilere f is a twice differentiable, convex functionsi.e. f" > 0. We would like
to mention here that the treatment presented in this artical can be extended to the system of conservation
laws. We have already applied this method to the system of isentropic flow (refer to 11)).

2. The prhiciple idea

As we know, the so-called weak solution of (1) is a bounded measurable function u(z,l) which satisfies

] ](,4, + f(u)4ol')dzdt + J uo(x)4)(x,0)dz = 0 (2)
n× 10,7'c R

for all (D E C,(R x [0,T[). (2) means that the equality (1) is correct only in distribiution sense. Hence if u E
BV space, equation (1) is allowed to be nonvalid on a set of measure zero. In fact, such a measure zero set
often corresponds to the discontinuities of solution.

T approximate equation (1), we can use a type of difference schemes

Lhut = 0. (;1)

Corresponding the fact that-equation (1) can be nonvalid on a set of measure zero, we can add a grid fiiiiction
it to the right-side of (3), wlhich can be nonzero on some grids. But in order to keep the consistiicy of

discrete equation (3) with (1), we must make Rh approach zero in distribution sense as h,,r tends I-) zero.
llcre h and r are mesh sizes. We shall call Rh the artificial terms.

3. The construction of artificial terms

For convenience we only consider (3) a general three point scheme

=j - 37+o' /2'x - 1 /2 ) (1

here h1+1/2 = h(u! 1 , ul), h(u, u) f(u), o" = r/h is the mesh ratio. For clearity of the approach , st; t
with a very special case, i.e. a Itiernann problem which involves a shock facing to the right. Obviously, it ik
the simplest case of discontinuity. We consider in this case how to construct the artificial terms propeti.,
and then extend the idea here to general case.

Riemann problem: The initial value is uo'z={U z< 0
ur z>0
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When h, r tend to 0, the left side of (8) approaches to the left side of (2). In order that the approximate
solution tends to the weak solution, the right side of (8) must approach to zero as h,r -- 0. Notice that the
numerical solution has only one jump on every time level. Assume that it is located on j" - 1 S j" + 1.
Also notice that at every time level only two artificial terms, P'--/ 2 and Pn-+I/2 are nonzero. Therefore,
the right side of (8) is reduced to

00=0 I pn 1/2 + 47 +1 Pj"+ 1 2)hr-'

If a > 6 > 0, and P' 1 /2 , ~P"'.+1/2 are uniformly bounded with respect to h, r and n, we can easily see
that (9) tends to zero as h,r --+ 0. The main consideration of our method is to keep the artificial terms
P7"5 -/ 2 and Pjn+ 1/ 2 uniformly bounded. One finds that they will be uniformly bounded if u7., the value of
numerical solution at the middle point of the jump, is uniformly bounded.

We now still assume that the jump on n level is located on j" - I - j + I (i.e. j* = j"). From (7) we find
that in the first case, it,+%, the value at middle point on n + 1 level, increases by a(tu, - ui.) over tt.. In the
second case, one finds that u7"+1 , also the value at middle point on n + I level, decreases by (I - ars)(u - U,)
down u"., if CFL-condition, lf'(u) < I holds. It is then easy to see that in order to keep u75 uniformly
bounded we should make the algorithm as follows: When u7. becomes too small, the first way is taken.
otherwize the second way is taken. In my papers I do this as follows: When

"7" < Ut + (f ) - f(u,)) (10)

is true the first way is taken, otherwize the second way. In doing so, not only the artificial terms are kept
uniformly bounded, but also the value of numerical solution at middle point, n, varies only between ul
and it,.

4. General case

In general case we cannot apply this technique to all the meshes on which it decreases with respect to j.
Because if doing so, we cannot make tie artificial terms only exist locally. Therefore we choose it positive
parameter a > 0, and only apply the technique to the mesh sections on which the u" decreases, and its jump
is greater than a. We call these mesh sections on which the technique is applied the 'generated sections'.
The generated section occupies at least two meshes. Then the computation on generated sections proceeds
as follows: If, for example, the generated section occupies two meshes j* - I - j' + 1, then we us. formula
(5) to compute the ut'+1 , with the artificial terms Pj7'-1f2, P.+-/2 defined by (7) only in which ul iN replaced
by u7._. and u,. by uj..

Tile exact weak solution may involve many interactions of shocks. These cases may also occur in the
numerical computation, i.e. discrete shocks meet and nerge in a proper way. The algorithm handles all
these cases.

5. The main theoretical results

a) Under certain conditions one can choose a convergent subsequence from the numerical solutions, and its
limit is a weak solution of (1).

The so-called 'certain conditions' mentioned above contain mainly two parts. One is that the numerical
solution it and its total variation respect to j are uniformly bounded. The other implies that the artificial
terms exist only locally.

b) If we take the original scheme (4) to be TVD scheme (so-called after Ilarten (2)), i.e.

u!+ 1 = " + G+"+ 1 2 (u7+ - u) - Ca-,/2(U' - -) (1)
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CC)

Fig. 2

Fig. 2-a shows a shock curve which is drawn by connecting all the spas' on every time level successively.
Fig. 2-b shows the discrete shock. Fig. 2:c shows the numerical solution oti the 100, h level. Fig. 2 indicates
that the numerical solution obtained is almost an exact solution.

Example 2. The initial value is

I, r < 0.185
t 0I z i -1 0.185 < z <0.2

0.3<z < 0.8
103 0.8 < r< I

This problem involves a shock with speed of 0, and a rarefaction wave. Let a = 0.1, h = 0.01, o - 0.9. The
nunerical result is presented in Fig. 3.

) rb 0 (C)

Fig. 3

Fig. 3-a shows the shock curve, Fig. 3-b shows the discrete shock, Fig. 3-c shows the nunerical solutio.
the 100th level.
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BOUNDARY CONDITIONS FOR NONLINEAR HYPERBOLIC

SYSTEMS OF CONSERVATION LAWS.

Fran~ois DUBOIS & Philippe LE FLOCH

Ecole Polytechnique

Centre de Mathdmatiques Appliqu~es

91128 Palaiseau Cddex - France

1. Introduction

We study initial-boundary value problems for non-linear

hyperbolic systems of conservation laws. Recall that with strong Dirichlet

boundary conditions the associated problem is not well posed. Generally

there is neither existeace nor uniqueness. Thus weaker conditions are

necessary ; in the linear case by example we know that data are given only

on incoming characteristics.

We consider two formulations of boundary conditions. A first

approach is based on vanishing viscosity method and a second one is related

j to the Riemann problem.

Equivalence between these conditions is studied. The latter

formulation is extended to treat numerically physically relevant boundary

conditions. Monodimensional experiments will be presented.

2. Boundary entroov ineoualitv (first formulation)

We consider a non-linear hyperbolic system of conservation laws

in one space dimension
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*u a
(1) + - f(u) 0 0 ; u(x,t) eW' , f(u) E W.

and we suppose that there exists at least a pair (,n,q) of entropy-flux. The

initial boundary value problem obtained by the viscosity method (e > 0)

a + ax f(ut ) " e- ux x > 0 ,t > 0

(2) U, ( x,O) - Vo(X) x > 0

uc(Ot) - Uo(t) t > 0

admits a unique solution ul and we study the behaviour of ut at the

boundary as c tends to zero. We have

Theorem I Suppose that u' is bounded in W1I (R x R+, E ) and converges

in Lo to u as e -' 0. For each admissible pair ('i,q) of entropy-flux we

have

(3) q(u(O ,t)) - q(uo(t)) - ''(Uo(t)).(f(u(O ,t)) - f(uo(t))) :< 0

between the taken value u(04 ,t) and the prescribed value u6(t) at the

boundary.

This result was obtained in [4] and the inequality (3) was

independently proposed in [1,6] by other methods. Then given a state u0, we

may define a (first) set of admissible values at the boundary

E(uo) - e vW' , q(v) - q(uo) - 1(UO).(f(v) f(Uo)) 0

W(ti,q) pair of entropy - flux

Therefore the boundary condition is
u(o+,t) e E(Uo(t)) , t > 0.

* The set Eluo ) is described in [4) in the cases of both linear systems and

(non necessarily convex) scalar conservation laws. For instance, in the
case of Burgers' equation we have



Proposition I [51 u e IR , f(u) " u2

E(uo) -- O] u 0O -0

We enphasize that by the lack of entropy functions, there is no

sufficiently information to explicit the E-sets in general cases.

3. Aooroach by the Riemann problem (second formulation)

For the second formulation of the boundary condition [3,4] we

suppose that each Riemann problem R(uL,UR) associated with (1) admits a

unique entropy solution denoted by w uL , URJ. We define a second

set of admissible values

V(uo ) - w(O ; uo , UR), UR varying in W

we have the following result

ITheorem Let vo. uo be constant states. The problem

a + f(u) 2 0 x > O, t > 0
(4)at ax

u(x,O) a va x > 0u(o,t) e V(uo) t > 0

is well iosed in the class of functions which consist of constant states

separated by at most n elementary waves (rarefactions, shocks, contacts).

Propijin.2 In particular cases of strictly hyperbolic linear systemsI. and (non necessarily convex) scalar conservation laws, we have

E(v%) V(uo) Vu0.
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The advantage of the second formulation is that V can be easily computed.

For the p-system, V(uo) is exactly the 1-wave containing uo . And, in

[3,4] we have given details on the V-sets In the case of barotropic Euler

equations.

4. Nonlinear numerical boundary conditions for Euler eguations

Classical boundary conditions for Euler equations are related

tothe theory of, characteristics. As usual, we distinguish between four

cases : the fluid may be sub or super-sonic at the in or out-flow and

physical parameters can be associated with each case ([7])

() supersonic inflow a given state uo

(ii) subsonic inflow total enthalpy and physical entropy

(iii) subsonic outflow static pressure

(iv) supersonic outflow none data.

We review briefly the main ide2s of [23. In a Godunov-type

scheme the computation of a numerical fl~x + at the boundary is just
necessary to define the numerical evolution. In each case (i) - (iv) a

Rartial Riemann Droblem P (N, z) can be posed between the above described

manifold N associated with each condition, and the taken value near the

boundary z . The flux + is then computed thanks to 3 ; 2 ; I ; I or 0 wave,

respectively between N and z. Numerical ID test cases on shock tube arv

nozzles involving the first order Osher scheme will bq presented at tL,

conference, showing the attractive convergence properties of the bounda?!

conditions in evolution towards steady state.
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ON GODUNOV TYPE METHODS

by B. Einfeldt
RWTH Aachen, West Germany

In the last several years Godunov-type methods have been applied successfully
for the calculation of inviscid compressible flow. In practice these methods are

characterized by their robustness and their possibility of computing flows with
very complicated shock structures.

Godunov [7) used the nonlinear Riemann problem as "building block" for his
numerical method. This allows a self operating treatment of weak and strong shock
waves. The numerical solution represents shocks nearly optimally thin, typical

is a monotone profile over one to three computational cells without unphysical
oscillations. From the theoretical point of view Godunov's method is an extension

of the classical Courant-Isaacson-Rees scheme (81. The underlying physical picture

of Godunov's method is useful for the interpretation of certain schemes and to
construct new ones.

The recent interest in Godunov-type methods was engendered by van Leer,
who realized the importance of Godunov's method and invented a second-order ex-

tension. Further development along this line were made by Colella and Woodward

Ill, Colella 121, and Fryxell, Woodward, Colella, and Winkler [16). A comparison

of some of these Godunov-type methods with more classical methods can be found

in 1171.

The disadvantage of Godunov's method and its higher-order extensions is
the difficulty of solving the nonlinear Riemann problem exactly, especially for

materials with complex equations of state. The exact solution of the Riemann

problem requires an iterative procedure, which leads to relatively complex and time
consuming numerical codes. Since computational efficiency is a major requirement

for applied numerical methods, this has restricted the extensive applications of

Godunov-type methods.

To overcome this drawback, several approximations to the Riemann problem

have been developed. For the ideal equation of state there are by now particular
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approximate *Riemann solver' available, among them are the methods developed
by Osher and Solomon i91, Roe 1121 and Pandolfi 1101. These linear approximations
are also of interest for the aerodynamic field where they provide a foundation for
the construction of more elaborate schemes 1131, 1141. More analytical effort is
required if a general equation of state is considered. So far, only two Riemann
solvers have been developed in this case. One iterative method by Colella and
Glaz 131 and a second explicit method by Dukowicz 151.

In the presentation we describe a new approximate Riemann solver 151 for
compressible gas flow. In contrast to previous Riemann solvers, where numerical
approximations for the pressure and the velocity at the contact discontinuity are
computed, we derive a numerical approximation for the largest and smallest signal
velocities in the Riemann problem. Having obtained the numerical signal velocities
we use theoretical results by Harten, Lax, and van Leer 181 to obtain the full
approximation. A stability condition for the numerical signal velocities is given.
We show that the addition of an artificial shock viscosity term of the van Neumann
type is equivalent to the spreading of the numerical signal velocities. Thus we
obtain a close relationship to artificial shock viscosity methods 1111. The great
advantage of the Riemann solver is its simplicity. The approximation substantially
reduces the program's complexity while retaining essential features of Godunov's
method, especially the accurate approximation of shock waves. The computation
of the signal velocities for a general equation of state will be discussed. We show
a relation to the recent generalized Roe Average of Vinokur 115).

Numerical results for the focussing of a plane shock wave in air - = 1.4 and
a typical shock tube problem for some specimen equations of state are shown.

Ji
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Time-Marching Method to Solve Steady
Incompressible Navier Stokes Equations for

Laminar and Turbulent Flow

by

Peter Eliasson and Arthur Rizzi
FFA The Aeronautical Research Institute of Sweden

161 11 Bromma, Sweden
and V

H.I. Andersson

Norwegian Institute of Technology
Trondheim, Norway

1 INTRODUCTION

Recently Miller and Rizzi developed a Navier Stokes solver based on an explicit
Runge-Kutta finite volumc method to simulate laminar compressible flows over wings
11]. In this paper we are concerned with incompressible flow. If we were to simply
apply the compressible code to this problem we would find that it would not converge
well at all because with decreasing Mach numbcr sound waves travel at a speed much
larger than the speed of convection and they dominatc the systemn making it stiff.
This increasing disparity in wave speeds causes the governing system of equations
to be poorly conditioned, and the stability of the computation is greatly impaired.
If, however, the interest is only the steady flow, artificial compressibility is one wny
round the difficulty, because this approach removes the sound waves from the system
by prescribing a pseudotemporal evolution for the pressure through the continuity
equation which is hyperbolic and which converges to the true steady state value.

Our purpose here is to prescribe a rather general numerical method that takes
the artificial compressibility approach for solving the steady incompressible Navier
Stokes equations. We show how it leads to a hyperbolic/parabolic system, carry
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out a numerical study of its condition, set forth the CFL stability limit for the time
integration, and develop a k - e turbulence model. Appropriate numerical far-field
and solid-wall boundary conditions are formulated also.

2 MATHEMATICAL MODEL

Since the continuity equation for incompressible flow contains no time dependent
term, an artificial time dependent term is added to the continuity equation. This
is done by using the method proposed by Chorin [1]. The Navier-Stokes equations
governing an incompressible flow, using the above method for the continuity equation,
can be stated in the following way:

1 (9P 20U)

PoOt Ox(

Dii + tL u + 1 ap y 0 =0 (2)
--t +  + Ox1  po axj C = X(

where Po is the constant density, ul are the velocity components, i is the viscosity
coefficient and p the pressure. The viscosity coefficient p is stpposc(l to he constant,
and c is an arbitrary parameter for optimal convergence. These eqiations have no

physical incasing until steady state is obtained.

lie inconlpressil)le Navier Stokes equations are spatially discretize(l by the finite-

volumne techlniqite. The velocity gradients of the stress tensor are cell averaged [1].
Applying the gradient theorem, the volume integrals over the gradients are expressed
by surface integrals over the cell boundary. At a cell interface, the velocity is ap-
proximated by the arithmetic average of their values in the two adjacent cells. Once
the flux tensor is determined in each cell, its value at a cell interface is approximated
similarly by arithmatic averaging. On a Cartesian grid, the present finite-volume
approximation is equivalent to a second-order accurate central difference discretiza-
Lion involving 13 points opposed to the conventional 9 ones. For the viscous terms,
the latter compact differencing is more accurate than the present approach, but our
scheme offers a larger stability bound.

A linear stability condition is derived for explicit Runge-Kutta methods applied
to the Navier Stokes equations. The condition is based on the scalar model equation
obtained by linearizing the equations. The geometrical interpretation of the metric
expression in transformed coordinates is used to apply the von Neumann analysis for
finite-differences to finite-volumes. The resulting stability condition determines the
local time steps of the present Runge-Kutta time integration scheme.

The k - e turbulence model requires two extra equations to be solved. Thesej equations are spatially discretized by the same finite volume technique, and a similar



I

stability condition'is derived for the determination of the local time step.

3 RESULTS

Results have been obtained for both external and internal flows. Results for the

external flow were obtained over a NACA0012 airfoil, and over a backward facing

step for the internal flow.

The results for -flow around the NACA0012 airfoil, Re=28S0000, a=0 are shown

on the 129 x 33 O-mesh after 3000 time steps. The flow becomes turbulent after

the transition at Y/7 = 0.5 according to existing experimental data. In the pres-

sure coefficient diagramn (Fig. 1) there are comparisons between the incompressible

Navier-Stokes solution, an Euler solution and the experimental data available. The

two numerical results are almost identical, as they should be for such a high Reynolds
number, except at a small region at the leading edge. The agreement between numer-

ical prediction and experimental data for the pressure coefficient is very good even
after the transition.

Results have also been obtained for internal flow, RE=50, 2:3 expansion, over

a backward facing step, the problem of a 1984 GAMM workshop. The point of

reattachment can be seen in the streamline plot (Fig. 2) and the wall shear stress

plot (Fig. 3). It was calculated to x/(H - It) = 2.83 . The experiments state 3.0 for

the point of reattachment, though most of the participants of the workshop managed

to predict the reattachment point between 2.7 and 2.9. The agreement between

numerical results and experimental data is quite satisfying in the wall shear shiess

plot. The evolution of the maximum velocity (the maximum velocity along the -

axis iii x-direction, Fig. 4) also shows a good agreement between numerical and

experimental data. le

Further details will be discussed and additional cases, both lainnar and turbulent,
will be computed in the complete paper.
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ON THE FINITE VELOCITY OF WAVE MOTION

MODELLED BY NONLINEAR EVOLUTION EQUATIONS

J. Engelbrecht

The Institute of Cybernetics, Estonian Academy of Sciences,

Akadeemia tee 21, Tallinn 200108, Estonia, USSR

Nonlinear evolution equations (EEs) used for describing the
wave motion play an important role in contemporary mathematical

physics. As a rule, the EEs give an approximate description of a

process and their direct correspondence to the initial systems is
quite often neglected. In the present talk, an attempt is made to

analyse this correspondence.

The initial systems themselves may be divided into two classes

[1] : hyperbolic and dispersive systems. It is clear that only the
hyperbolic systems are directly based on the physics of wave motion,

i.e. on the finite velocities. However, quite often the dispersive

systems are derived from basic conservation laws by using certain
asymptotic methods in order to emphasize certain physical effects

and the concept of finite velocities may be lost. This way or

another, the EEs are used for both cases. As shown by many authors

(2-4], the moving frame used for deriving EEs, needs a finite

velocity which is determined beforehand from the initial system.

That is why the procedures of deriving EEs require full attention.

The details of general procedures are to be found elsewhere
[5], here we shall outline only the generul idea of the asymptotic

method which is suitable to explain the problem of velocities.

Suppose a general system describing a certain wave motion is

written in a form

aU k a +P )q

L - + A U= 0
t xk a(x.)P Mpt q

with appropriate initial and boundary conditions. Here U is a
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n-vector of field quantities. System (1) may beside the higher

derivatives contain also the integral terms. An associated

system to the Lg = 0 may be derived by using perturbation theory.

Suppose it takes the form

au a U

La =- + A0  - + f(U) = 0. (2)

k

eigenvalues of A0 are real and in the physical terms we have

a set of velocities (for every wave n = 1, 2, ...) . If the

associated system describes dispersive waves then the corre-

spondent group or phase velocities should be determined [3].

The EEs for every single wave ui E U are derived using

several approaches [2-5] in the form

- R(ui) = G(ui) (3)

written in a moving frame

= t - cij (x k ) (4)

where ci is a certain finite velocity determined from the

associated system (2). Notice that in many cases G(ui) = 0
which may yield

R(ui) = 0. (5)

This corresponds preferably to one-dimensional problems. The

operator R(ui) itself is usually of the form

aui aui a2u

R(ui) = - +ui -+- + ... (6)
ax a ag 2

where xj denotes the direction of the wave beam.

Beside the problems of distortion an important question

arises - what is the real wave velocity (signal velocity) and

how to determine it. In other words, the relation between the
eigenvalues (or phase and group velocities) determined from the
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associated hyperbolic (dispersive) system (2) and the real
finite velocities of wave motion should be clearly stated for
non-conservative processes.

Further, several specific cases are analysed, including the
following:

(i) some rather well-known examples are briefly described
in order to demonstrate various approaches; these examples in-
clude nonlinear waves in dispersive, thermoelastic and relaxing
media;

(ii) a special non-conservative problem of wave motion in
a dissipative medium with energy influx (an active medium) is
analysed in more detail; the example under consideration is the
nerve pulse propagation and two models - the classical one based
on the diffusion equation as well as the evolution equation
derived recently by the author - are compared.

As a conclusion, the full preference in analysis should be
given to models based on the concept of finite velocities. The
final governing equation, say EE written in a moving frame may
not be strictly hyperbolic but then the real velocity, and/or

the real wave number and frequency should be restored through
a suitable transformation.

Numerical examples illustrating the talk are obtained by
using an algorithm based on the FFT technique together with
the leap-frog method [6].

References

1. Whitham G.B. Linear and Nonlinear Waves. John Wiley, New

York e.a., 1974.
2. Jeffrey A. and Kawahara T. Asymptotic Methods in Nonlinear

Wave Theory. Pitman, London, 1982.
3. Taniuti T. and Nishihara K. Nonlinear Waves. Pitman, London,

1983.

4. Engelbrecht J. Nonlinear Wave Processes of Deformation in

Solids. Pitman, London, 1983.
5. Pelinovski J.N., Fridman V.E. and Engelbrecht J.K.'Nonlinear

Evolution Equations. Valgus, Tallinn, 1984 (in Russian,
English edition to be published by Longman).

6. Peipman T. and Engelbrecht J. Two-dimensional evolution

equations for transient waves - an algorithm by means of
Fourier transform. Acta et comm. Universitatis Tartuensis,
1982, No. 627, pp. 107-112.

96



IMPLICIT UNFACTORED SCHEW FOR WEAK SOLUTIONS OF THE RULER EQU&TIONS

B. Favini • F. Sabetta

Dipartimento di Meccanica a Aeronautics

Universiti di Rome " La Sapienza", RomaI
A new non-linear finite difference scheme for the numerical approximtion

the weak solutions of the Euler equations has been proposed in /1,2/. The

''ux vector of the Euler equations are homogeneous functions of degree one with
.spect to the c6nserved variables/3/. This property enables us to devise a non-

4. "near scheme with shock-capturing property, but written in quasilinear form
eryvhere the solution is smooth. Let us consider for simplicity the one-dimen-

sional case:

w + F(w) = 0 ()-t ----x

with

w = { p , Pu e and F(w) = { ou , pu2 , u(e+p) I

As a consequence of the homogeneous property the flux vector is equal to

the product of the iacobian matrix time the vector of the conserved variables,

F(w) - Aw where A - a F(w)/ aw (2)

When the solution is smooth the system of equations (1) can be written in

quasilinear form:

w +Aw =0 (3)

-t -X

Consider now the discrete approximation of the flux derivative, for the

homogeneous property:

A F - A(Aw) -A Aw + AA w (4)

where the hat means a suitable definition, e.g. the average value. If the solu-

tion is smooth the divergence and the quasilinear iorms are equivalent, while

IL if there is a discontinuity only the divergence form (1) is able to compute the

correct weak solutions of the Euler equations /4/.The analysis of the expression

9
Il
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(4) show that the second term in the right hand side is rosponsible of the

shock capturing property of conservative schemes. But this term is also respon-

sible of the great amount of numerical dissipation that affects the conservative

schemes. Therefore when the solution is smooth the equations are discretized in

quasilinear form, while, when a discontinuity is detected inside the field the

divergence form is restored by simply adding the second term in the right hand

side of expression (4).
By means of minor modification these technique can be incorporated in a

non-conservative scheme to compute the correct weak solutions without the use

of a shock-fitting procedure.
The technique has been tested by means of several one and two dimensional

problems . The integration in time has been performed with a two-step explicit
procedure. The space discretization is consistent with the sign of the characte-

ristic and is second order accurate everywhere, except across a discontinuity

where the first order accuracy is required to maintain the monotonicity of the

solution.
In the present work we want improve the computational efficiency of the pro-

posed scheme by the use of an implicit technique. The system of equations (1) is

discretized in time by means of a two level implicit backward Euler scheme. The

equation written in incremental form /5/, and linearized in time by neglecting

terms of order A2, are:

Xn. + A n 6wn + 1 -n n n

where X=At/Ax, and the relation (4) has been substitute in (1). The left hand

side operator is discretized in space by means a two point characteristic biaseO

scheme. Therefore the incremental quantity 6w is computed with a first order ac-

curacy in time and space. Instead the right hand side is discrtized by menas a

three point characteristic biased scheme so that the final steady state solution

is second order accurate. For the one-dimensional case a block tri-diagonal matrix

is obtained and a direct inversion can been performed very efficiently.

In the two-dimensional case the matri results block penta-diagonal. In the

present work the inversion of the matrix will be obtained by means of a n itera

tive procedure/6/. In fact the use of an approximate factorization imposes a li-

mitation on the size of the time step in order to reduce the numerical error in-

troduced by the mixed derivative, whiwh is proportional to At2 . The parameter 0

enables us to vary from a fully implicit to a fully explicit formulation. The ac-

curacy and the convergence velocity of the scheme will be verified by means of

one and two dimensional test cases.
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Fig. 1 H ach distribution. Fig. 2 -Entropy distribution.

Fig. 3 -Time history of the isoMach lines. Fig. 4 -IsoMach lines.

Fi g. 5 -Constant entropy lines. Fig. 6 -Pressure coefficient distribution.

Fig. 7 -Iso~ach lines.
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Viscosity method in nonlinear systems of conservation laws for
transonic flows

! bl~Niloslav Feistau e and Jindfich Nelas
~Charles University Prague

ISokolovski 83

18600 Praha 8
Czechoslovakia

We prove that the solution of a compressible generally transonic flow of an ideal fluid can
be obtained as a limit of viscous solutions, if the viscosity and heat conductivity tend to zero.

Let us considor a weak solution of a stationary, compressible, perfect, viscous, conductive
gas flow in a bounded domain 11 C RN (N = 2 or 3) with a Lipschitz-continuous boundary 01,
satisfying the conditions

(1) E W"'(11), 0 < Wo _< Xx) <5 E < + 00,

(2) vE IV"2( (, RN), jvj < K,

(3) g E L"'(00), h E L'(0R), IIgILo(80), IIlhjL,(on) _ K,

(0) 2' E IV'' 2 (n), 0 < T _ T(x),

(5) 1/ pdI _ K p = I?.T, R = const > 0

with constants , 0i, K,Tn, R in~ioendent of the viscosity it and heat, conductivity k, and the
equations

(7) Vi dx = J 9  ds VW E

(conitimiuity C(iation)

*(8 Iloi 2> i dx fP !W'dx + 2 t OJ * W-' dx - 211] Cij( v)ej 1(,p) dx,
nji O3 Ox

S+ ! , VW = (pt,. .. v,.) E IV1' 2 (I, R"),

11 E 111V' (l, I2 1 ) +1 ,n "(Q, li mN), t,--- = 1 n 0 ,
' it I v,,{~n,)+ IIl . m n, < K

(Navier-Stokes equations),
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TeSv, . dx + J TS9 od- J ,SW dx

(9 j 9  V1,2 (nL()
() =-k VT.Vvdx+kf hpds+ fr(v)Wd s  VV E ~,(Q) nLVO(n )

(energy equation),

where

2 (On , 2
(10) E(v) 2jcej(v)eij(v) - t

and

(11) S = c, InT.

Ilere, we denote v- velocity, o- density, p- pressure, 7'- temperature, S- entropy, E- dissi-
pation; cu > 0 and x > 1 are constants.

Further, we consider the entropy control on the boundary

(12) -jS ds < K V/1>0

and assume that k = ijt with > 0 independent of it , k.
Let us consider a sequence {P.i, /in \ 0, k,, = #I&,, and a corresponding sequence of

solutions (g,,p,1 ,,", T. ,Sn} to (7)--(9) with properties (1)-(5). We derive estimates which
allow to choose a subs,!quence (denoted again L,,,p. etc.) such that

69 n 60 weakly in L2(Qt),
T 7' in LP(Q) Vp E [1,2),
',, T almost everywhere in 11,

(13) n" -- SV weakly in VI 4 /3 (f, I1N),

V" 1n in L'(S) Vp E 11, -'N3N - 4,
vn -- v almost everywhere in Q.

The ,tnin results [1], [21
a) gn - in L2(O).
b) IfS, -- So in L'(O0), then e,Tp = RQT, v and S = cln F-T form a weak solution of the

conservation law equations of a nonviscous gas.
Under some special assumptions and with the use of the method of characteristics we prove

that the limit flow is isentropic, adiabatic and potential.
The conditions (1)--(5) which lead in the limit to flows without strong shocks can be

weakened in such a way that instead of (1) and (5) we consider (2J)

(14) 0 < go 5 < +oo, 0 E IV"'(QZ),Illnellp(n) :_ c < +00, 5II'(n) < c < +00.

Then

Lo 60 in L 2(i),
(15) " * -weakly in IV(SI, 1 4),0. o =VT --+0o in L9(fl) V9 E (1,2),

.5,-+ S in L9(fl) Vq E [1,2),
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and the limit satisfies again the conservation laws for a nonviscous gas in a weak sense. The
tact that v E BV(12, IN) permits also strong shocks in the flow.

Finally, if instead of (1) and (5) we assume thatI
"(16) 0 < N(,k) <_ e(x) _ i, < +oo, 0 E

and

(17) n T K

then the limit flow can have cavitations oti a set of positive measure ([31).
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HYPERBOLIC SCHEMES FOR
MULTI-COMPONENT EULER EQUATIONS

G. Fernandez , H. Guillard , B. Larrouturou

INRIA, Sophia Antipolis, 06560 Valbonne, FRANCE

1 Introduction

Our purpose is to build efficient conservative schemes for the computation of multi-species
(possibly reactive) flows. On this way we consider simplified models in which the governing equa-
tions include Euler's hyperbolic terms for several species. Even in the case where the different
species have different molecular weights and specific heat ratios, the model is shown to remain
hyperbolic. We present several preliminary numerical results obtained by extending to this multi-
component Euler system some classical flux-splitting schemes.

2 Multi-component Euler equations

For sake of simplicity, we first write the model in one space dimension, with only two species
Ei and E2. Neglecting diffusive and reactive terms in a first step, we consider the following
6multi-component Euler equations":

We + F, =0, (1)

with:

W W2 F= (PU2 + p ?
W 3 F= u(E+p) (

W4 \pY PUY

The notations for the density p, velocity u, pressure p and total energy E are classical; mor -- r,
Y is the miss fraction of the first component E, (i.e. pY (resp: p(1 - Y)) is the separate de-otay
of E, (resp: E2)1. To close the system (1), we need to express the pressure as a functi i of
the dependent variables Wi. Assuming that the two species behave as constant gases, and ng
classical thermodynamical relations, such as Dalton's law and Mayer's relation, we get:

12p( - 1)(E - lpu2),

with:
Yal-l + (1 - Y)Ck 2 Y2 W4Ct's1 + (WI - W001-12 4

Yal + (I - Y)* 2  W 4 Q + (W - W4)a2, 4)

where a, = M t- 1), a2; = Afs(%.I - I); the subscripts I and 2 refer to the two specie!' 1ud
M denotes the molar weight.
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Thus y -(W) is an homogeneous function of degree 0, and P F(W) is homogeneous of
degree 1, as in the single component case. Setting F(W) = 7(W, (W)), we can write the Jacobian
matrix as:

A(W) dl= 7 + y T

with the properties: =-2
A~w~w t(W}, T W= o.

A remarkable result is that the matrices A and fw have the same real eigenvalues:

) A 1=U , - 2=U+C , A3= -C , A4 =U , (5)

where the sound speed still has the classical expression c = Vrl-,i. The corresponding eigenvectors

with H= , X= L a- , are linearly independant, which shows that the system (1)-(4) is

hyperbolic (although non strictly hyperbolic since A, = A4).

There is no difficulty in checking that these results also hold in several space dimensions or if
the number of species is greater than two.

3 Numerical approach

Following previous studies on the numerical simulation of perfect gas flow or reactive gas flow,
we use for the approximation of system (1) a finite-volume approach on a (possibly unstructured)
finite-element mesh (see 1IJ, [3J). Our goal is therefore to investigate how the classical flux-splitting
hyperbolic schemes perform when applied to the full system (1) with the species equations added.

The numerical results presented below have been obtained with Roe's numerical flux function
(written here for the one-dimensional system (1)):

0 (W,,W2 ) = F(W1 ) + r(W2) + 11A(WfI(WL W2 )2 2- IA W 2

where W is defined by:

C _____+_/L -/P+ V rP2Uivu2  - H 1 /H+/52H2  - LP 'Y + ViTh
2 2v % 2,H= ' vlp "

Concerning this last scheme, it is of interest to notice that the fundamental property of Roe's
scheme F(W) - F(W2) = A(W)(W - W2 ) is still satisfied when -Y = -Y -, but no longer holds
if 7 02.

Figure 1 shows how the above scheme performs when applied to a Riemann problem for system
(1). We consider Sod's shock tube problem, with two diffeent components on both sides of the
discontinuity at t = 0, and with -/= -1/2 = 1.4. The species profile obtained with the scheme
(6) can be compared to the profile obtained by combining the usual Roe's scheme for the Euler
equations with a donor-cell approximation of the species equation (pY)t + (puY).= 0.
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Figure 2 represents mass fraction profiles across a planar premixed flame with one-step chem-
istry (in this case, diffusive and reactive terms are added to the energy and species equations in
(1)). The scheme (6) is now compared to a scheme combining Roe's scheme for the Euler equations
and a centered approximation for the species equation (see [21). Using as a reference the results
obtained with the 'combined scheme' and 401 mesh points, we observe that the error in the flame
location obtained with the *combined scheme' operating on a coarse grid is considerably reduced
with the global flux-splitting (6).

Lastly, we show in Figure 3 the two-dimensional interaction of two supersonic gaseous jets;
the impinging jets are made up of two different species, with MI # M2 and -71 - 72; the system
of governing equations simply is the two-dimensional analogue of (1)-(4), with no diffusive and
reactive terms. Although the diffusive effect of the scheme clearly appears when observing the
mass fraction contours (obtained on a uniform non adaptive mesh), the scheme behaves in a very
promising fashion.

4 Conclusion

For the solution of (possibly reactive) systems including the multi-component Euler equa-

tions, it appears that the results of calculations in which the usual Euler terms and the added
continuity equations are treated separately can be substantially improved by using a global flux-
splitting approach similar to (6).
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Multigrid Methods for the Solution of
Porous Media Multiphase Flow Equations

by
T. W. Fogwell and F. Brakhagen *

For flow in a porous medium Darcy discovered that a good method to calculate the superficial velocity was to
ise the pressure gradient as the driving force and regard the properties of the medium as a transmission factor.

'he velocity was inversely proportional to the viscosity and the pressure could be due to gravity effects. For each
'hase 1, then, we have the velocity

V1= - -(VP + pig)

-,here A is the viscosityK is the permeability,P is the pressure, p is the density, and g is the gravity vector.
The volumetric fraction (saturation) of phase f is denoted by SI, so that E$t = 1. It was discovered that for

iultiphase flow the permeability tensor could be mote accurately split into two parts so that KI = kIK where
'I is a scalar depending on the saturations and K is a tensor depending on the spatially varying structure of the
itedium. Mass conservation is represented by the continuity equation

=(#pi51) --V . (piv) - qI (2)
at

,here qj is a production (sink) term and 0 is porosity (fraction void space).
In order to solve the equations boundary and initial conditions must be specifier! together with the parameters

'n the equation. Usually the boundary conditions are no-flow Neumann type conditions. For constant temperature,
the following are specified: 4(P), pt(Pj), pj(P), and k,I(S 1,..., Se). Another relationship is then 'needed. This
is usually taken to be the capillary pressure P defined to be the difference in pressure between a wetting and a
non-wetting phase, and is considered an emperical function of the saturations.

The Darcy's law equation is combined with the continuity equation to eliminate the velocity and gives
= tkt V ( + pg)] -. (3)

at Ait

The unknowns are then the PI and St. For incompressible flow this becomes

OS, = V.[ ,K(VP, + pig), _ QJ (4)
M.

where Qt = qi/pl. In order to eliminate the saturations we can sum the above equations to give
V. [IK (VP, + pig)] - Q = 0

I t

where Q, is the total production. This is an elliptic equation and demonstrates why one might expect multigrid

methods to work.
If just two phases, o and w, are present, then capillary pressure P, = Po - P. If the capillary pressure is

taken to be sero, then P. = P. = P. If the flow is horizontal, then pig = 0, and we have V, = -(k, IK/pt)VP for
each phase 1. Also, v, = (k,.po/krop.)vo. Let vt = v. + v, and ft = (kt/gi4/(k,,/pu + k,,/p1) for t = o or
w. Then vti ftti and the equation for phase I becomes

O t= -V -(fIVI) -Q1.

" If we look at the places where there is no source or sink term, then QI = 0. Exp'inding the right side, we get

cOSt

For incompressible flow this becomes , 8S = 5 ~ . vstas, dfS

which has the form of a first order hyperbolic equation. The discontinuities in th- initial conditions are then
propagated. This is why one might expect multigrid methods not to work so well.
as The discontinuities in the solution are not the only problems. There are large di~icontinuities in the coefficients
as well. K can have discontinuous jumps ofseveral orders of magnitude due to changer in the medium's geological

* SchloB Birlinghoven, 5205 Sankt Auqustin
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features. These wre aggravated by large discontinuous changes in kt as a result of the sudden changes in the
saturations.

The equations we solve are those for incompressible two phase low in two dimensions. We use two general
techniques, both using multigrid, one called IMPES (implicit pressure, explicit saturation) and the other called
the simultaneous solution (SS) method. The general equations for both methods are

- ( P. + P-g) - Q. (6)

OS-- = V. [!-.K(VP. + P0..- Q-. (7)

For the IMPES method we add the two above equations to obtain a "pressure equation," as follows,

V. [(A° + A,)VP. - AwAVP - (Ap. + A.P)g] -q. + Q. (8)

where At = k.5 K/#p for I = o or w. This equation is elliptic. All saturation related terms are taken at the old
time level and equation (8) is solved for P. at the new time. Once P, is known, equation (7) is solved explicitly
for the new saturation S.. From this P. is known and the process is started again.

The problem is discretised by the standard finite difference method with reflection boundary conditions. The
standard multigrid method will fail because of the large jump discontinuities in the coefficients At. The difference
operator itself is used for the interpolation operator as originally proposed by Alcouffe, Brandt, Dendy, and
Painter. This more closely follows the continuity of the AaVPt terms rather than attempting to interpolate the
discontinuous VP terms. The restriction operator is taken to be the transpose of the interpolation operator. The
coarse grid operator is taken to be the Galerkin approximation derived from the fine grid operator together with
the restriction and interpolation operators. If L - 1 is the coarse grid operator, L" is the fine grid operator, and I
is the interpolation operator, then Lh- 1 = lrLkI. Although the finite difference operator on the finest grid has a
five point star, the operators on the coarser grids all have nine point stars.

For relaxation steps we use point, line and alternating line Gauss Seidel methods. With the W-cycles we use,
the algorithm exhibits the usual multigrid efficiency. The average reduction factor per work unit ranges from 0.25
to 0.6, where one work unit is the work required for one relaxation step on the finest grid. Because of the explicity
treatment of saturation, the following restriction on the sise of the time step, as was given by Asis and Settari, is
imposed for stability:

At < min - z A min f,. +  "
i K .,L.+K A "  ',$-. lP"I

If the mesh sises are very small or P is very large, then the sises of the time steps required for stability are
unacceptably small. In this case the simultaneous solution method preferable.

The system we use in the simultaneous solution method is symmetric. The equations (6) and (7) are transformed
into

P,
V. [,(VPo - p.g)] = - M") + Q. (9)

at (&

V. [A-(VP. - Pg)] = 0S( . )(

by taking S, = OS,,/BPC, on the assumption that P,(S) is invertible and S., exists. The equations are solved
simultaneously for P. and P.. The new saturations are then found by S. (P,). The finite difference discretisation
of the system leads to a symmetric, block-pentadiagonal system where the blocks are 2x2 submatrices. The off-
diagonal blocks are diagonal matrices. The discietisation is backward in time with explicit mobilities A, and A,,.
The scheme is unconditionally stable.

Again the difficulties in a multigrid scheme are the discontinuities in the coefficients Al. We use a generalization
of the interpolation procedure we use for the IMPES method applied to systems, which was originally proposed
by Dendy. The coarse grid operator is still the Galerkin approximation derived from the interpolation operator
L&-t = ITLl. The interpolation and restriction operators, however, consist of submatrices. The relaxation is
done by collective point, line or alternating line Gauss Seidel methods. The convergence of this multigrid method
seems to be about the same as for the IMPES method. Because of the large accumulation term which appears
on the coarser grids (not found with the IMPES method), the coarsest grid must be taken fine enough to assure
that the operator equation is nonsingular. This seems to impose no practical restriction on the method. We are
currently testing different more efficient methods of obtaining the coarse grid operators. These promise to save
much computational effort over the Galerkin approximation, particularly in three dimensions.
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CENTRAL DEGENERACY OF ROTATIONALLY SYMMETRIC HYPERBOLIC SYSTEMS OF
CONSERVATION LAWS

H.FreistUhler
Institut fUr Mathematik, RWTH Aachen

1. Outline

Theorem: Assume the flux function of a hyperbolic system of con-

servation laws displays a generic rotational symmetry. Then, loc-

ally near any point that belongs to the center of symmetry, the

Riemann problem has a unique stable solution, which depends con-

tinuously on the data. -

The assumption is wide enough to cover interesting cases from

continuum mechanics, so nonlinear elasticity of an isotropic body

near the ground state and magnetohydrodynamics with magnetic

field nearly parallel to the direction of wave propagation.

The difficulty lies in a loss of strictness at the center: the

usual construction of Lax and Liu is not directly applicable;

we adapt it to the degenerate situation by giving an appropriate

less (but enough) regular parametrization of the elementary

waves.

There are many interesting papers on non-strictly hyperbolic sys-

tems (see Keyfitz's survey) that do however not touch the rather

natural problem considered here. E.g. theclassification by

Schaeffer a Shearer in the frequently useful model class of 2x2

systems accidentally avoids rotational symmetry by its restrict-

ion to quadratic flux functions. The only rotationally symmetric

systems whose RP has been studied rigorosly in previous literat-

ure, that of the elastic string and intimately related models

(Keyfitz & Kranzer, Liu & Wang, Shearer), have their state space

bounded away from the center, so that the central degeneracy

does not appear there. Examples of centrally degenerate rotation-

ally symmetric 2x2 and 3x3 systems have recently been given by

Freistdh-Ler.

2. Details

2.1. Stable solutions of Riemann problems

As usual we look for weak solutions that are centered, piecewise

smooth and have discrete discontinuities. Let f:UIR n describe the

system. For (u,s)EUxR,write R (u,s):- Z'ker(Df(u)-).p111 Xls



Def 1. (u-,u ,s)EUxUxIR represents a linearly stable discontinuity

(RH) f(u+)-f(u-)=s(u+-u- ) and

(LS) R+(u-,s)+R-(u+,s) c R-(u-,s)OR +(u ,s)03R (u +-u) .

Def 2. A linearly stable solution of a RP is one with all its dis-

continuities linearly stable; any weak limit of linearly stable

solutions is called a stable solution. -

Actually, with rotationally symmetric systems, weakly (= not

linearly) stable solutions occur naturally. Some of these are

associated by a continuous version of structural lability in the

sense of discontinuous changes of constant states in solutions.

For this concept of stability compare Jeffrey & Taniuti and

Majda.

2.2. Rotational symmetry

Def 3. For m,k,n=m+kE!N, decompose uETR nas u=(x,y)ERxIR k ; to

any OEO'(m) define O60(n) by O(x,y)=(Ox,y). f:U- R n is rotational-

ly symmetric (with respect to x) :** f0o=UOf for all OCOm). -
A k

Ctr . Then f=(X,Y) with X(x,y)=X(IxI,y)x , X:IRx]R -3R,Ak kY(x,y)=-Y(ixjy) , Y: IRkIR - .

A -1 T+A A AXAIxI_ xx +Xm '" y \/X(OY)i 0
Df('x,Y); A A at (Ixl,y); Df(O,y)-, A

(YAlx{-lx Y Y) 0o Yy(o'Y
a A

:=X(1.1,.) is an eigenvalue of Df. -

A A^
Cor. 2. For the corresponding radial system f:=( ,Y),

A Y+ AA^

D has a continuous eigenvalue A with A(O,y)= O,y).

\YA Yy
rA

Ar'uA(.j,.) is an eigenvalue of Df. -

Def 4. Let u0=(Oy 0 )EE:={(O,y)EU}. f is generic at u0
(i) t is strictly hyperbolic and

(ii) D 2.O,y o )*O and
(iii) Each eigenvalue of Dt different from is genuinely non-

linear or linearly degenerate. -

1
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2.3. Parametrization of the stable transverse waves

Def. 5. Near Uo: transverse waves :** elementary waves with

speeds s near X(OY 0 ). -

Main lemma: Near u0 , all combinations of stable transverse waves

can be parametrized by a map St , defined in UxIRm near (u0 10),

where S t(ult )=ur means that ul,u r are left and right hand sta-
tes of a sequence of stable transverse waves of increasing speeds.

Stis continuous and piecewise smooth and fulfils

(i) St(.,O)=id

(ii) D tSt (u,Ct )=(I +A)(I ,(I ,OT)with A=OQU-UoltI) . -

u,C n n M 011 o)
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ON A IODOGRAPH-LIKE TRANSFOR4ATION FOR QUASILINEAR HYPERBOLIC NON REDUCIBLE

SYSTEMS OF FIRST ORDER

D. FUSCO

Dipartimento di Matematica e Applicazioni
UniversitA di Napoli, Via Mezzocannone 8

80134 Napoli, Italy

Let us consider a quasilinear nonhomogeneous hyperbolic system of first

order

U + A(U) U =B(U) (1)

where x and t are, respectively, space and time coordinates and

U =1 A(U)= 1 B(U) 1 I U = U = -

-t at --x ax
2 1  a22 b2

The hodograph transformation is no longer useful to reduce the governing model

to linear form. However, along with the lines suggested in [1] , we introduce the

following variable transformation

x - (u,v) T = t -T(uv) (2)

where t(u,v) and T(u,v) are differentiable functions such that i 0
a(u,v)

and satisfying the pair of equations

1 v + A(U) 11 (u1 B(U). (3)

Hence the transformation (2) can be considered hodograph-like.

Under the change of variables (2) the system (1) transforns into a similar

system of the form

U- + A(U) U- = B(U). (4)
-t -x --

The transformation (2) can be useful to solving physical problems only When

the transformed system is in a form whose properties are well known. 4
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Occasionally, the tri .'forwition (2) may be used also to lirik certain qviisilinear

systems like (0) to linear' canonical forms.

We characterize the most ueneral class of models of the form (1) %bich can be

linearized directly through the use of (2).

More general than the direct requirement of linearity to the transformed s

stem is the case where the model (4) can be reduced to linear canonical forim

via a further B"cklund transformation.

Apart from its own theoretical value, the afore-menitioned reduction proccLure

either to linear or to nonlinear canonical forms can be used also as a mathema

tical vehicle for characterizing functional forms to the material response functions

involved in the basic governing system (1) (model constitutive laws).

PhysicAi contexts where the present approach can be applied are given, for

instance, by hyperbolic models for heat conduction, river flows, nonlinear tran

siission lines.

Such an analysis can be used:

i) for solving certain classes of nonlinear hyperbolic botuic'ar, value problem;

ii) for constructing exact progressive wave solutions;

iii) for investigating simple wave interactions in nonlinear h3perbolic dissi

pative media.
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Algebraic Solutions of Benney's Equations

J. Gibbons

Department of Mathematics
Imperial College

London
U.K.

Y. Kodama

Department of Physics and Department of Mathematics
Nagoya University Ohio State University
Nagoya 464 Columbus, OH 43210
Japan. U.S.A.

The first two equations of the Benney hierarchy [1],

OAn OAn~1  ___

On - Otn + n AnI O9A )

OA 2 A+ CoA atoO~
at3- Ol + - A- + (nt + 1) An --Ot + it An-, 0A,

are the simplest members of an infinite family of commuting flows [2], the n-th of whic, is
parameterised by a 'time' tn. They possess an infinite number of conserved densities, which
are polynomial in the 'moments' An.

One of the mosi interesting physical applications of these equations arises from the f.
that A0 satisfies the autonomous equation [3]:

02 A0  02 A0  1 a2 (A')
at 3at Ot2 + 2 Ot2

which arises in the theories of transonic flow [4] and nonlinear acoustics 15]. Sonic sp al
solutions of this equation can be found by looking for solutions independent of t2 of 1;

in these cases, respectively, only one and two of the moments An are independent. '3y
restricting to solutions invariant under higher equations of the hierardy, we obtain nonli ,;r
systems of higher order, which lead to solutions of (2). Algebraic solutions of these I, th
order systems can be found by looking for expressions for the times tl,... , tN as polynon ,.s
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in the variables Ao,... , AN-I, a procedure which can be carried out systematically. This
procedure is the natural generalisation of the hodograph transformation [6).

The transformation is carried out by first writing down the equations for the dependence
of Ao ... A,, -1 on the variables x, t 2 , 3 ... tn, where all the Ai are required to be invariant
under t,,+, translation. Then we write theses equations in terms of differential forms, and
obtain a consistency condition between them, which is a linear p.d.e. for the minors of the
Jacobian matrix 0(t 1, . . , ti)/((Ao, ... , An- 1 ). Solving this linear equation, we then may
integrate once, to obtain equations for differential forms of order one less; this gives an
over-determined system in general, but for these equations we have found (at least for n=3)
a construction for the solutions. It is then possible to continue the process, until explicit
formulae for the ti as functions of the At are obtained (7].

There seems to be a remarkable and largely unexplained relationship between these
functions and the conservation laws of the restricted system; it seeims that the polynomial
for t,, is always a conserved density of (1), provided OA, = 0, while the other ti are the
corresponding fluxes. It is expected that these techniques can be extended to other systems
of completely integrable distpersionless p.d.e.'s, of which the most important examples are
perhaps the modulation equations for slowly varying KdV wavetra, s of genus g [8,9]. These
have a similar structure to Benney's equations, although they are much more complicated;
for instance, the conserved densities are no longer polynomials, but may be expressed as
hyperelliptic integrals (elliptic if g = 1). Since even the genus 1 case has not been solved
explicitly, this problemn is well worth pursuing.
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GLIMM SCHEME AND CONSERVATION LAWS OF MIXED TYPE

H. GILQUIN

CNRS UA 04-740 and University of Saint-Etienne

We investigate the numerical resolution of problems modelized by conservation

laws of mixed type. Many phenomena in elasticity are governed by such equations; i.e.:

A) Longitudinal (or pure shearing) motions of a material admitting phase changes:

u.t = G(uX) X

u(x,t) : IR x IR'- - - /
1-1

with &(u) > 0 if u e [a,]]

and a'(u) < 0 if u e [ac1

One phase of the material can be distinguished from another using intervals where

a'(u,) stays of constant sign.

System 1-1 is hyperbolic if a' < 0 and elliptic if a' > 0. The same basic system is obtained

when we study the motion of an isentropic Van der Waals gas [HS].

1
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8) The motion of an elastic string:

1-2 yt y , YS

y(s,t) : R2 x R* R2 is the location at time t of the string at rest's point

of reference s. The stress T satisfies:

rT(I)=O0
1-3-a T

[T'(r) >0 for r > 0

and for sake of simplicity, we will assume:

- either T(r) > 0
1-3-b

torT1(r)<0 and T'(r)>rT(r) Vr>0

The system 1-2 is strictly hyperbolic if y e H{ y / r I >1 } and of mixed type if r < 1.

It has been studied in [Sh], [KKI and [CRS].

The difficulty of the numerical approximation of such systems arises from:

I) Classical schemes (Godunov, Glimm, Van Leer ...) are mainlybased on solving Riemann

problems, resolution which is not always possible if the solution leaves the hyperbolic domain.

II) These systems are ill-posed when the solution leaves the hyperbolic domain and

numerical approximations are very unstable (Hadamard instabilities).

Our goal is not to predict unstable states, but the search of stable states, particularly when the

solution comes back in the hyperbolic domain after having left it.

For system 1-1 and system 1-2 under assumptions 1-3, it has been proved ([Sh],

[CRS]) that the hyperbolic domain is stable by Riemann problem solution and therefore by

Glimm's scheme. A theoretical study of approximated solutiois of 1-1 and 1-2 by Glimm's

scheme [GI] has been done in [PS] and it is proved that weak convergence and hence strong

convergence cannot occur in some cases where the solution leaves the hyperbolic domain.

L We restrict our investigation to system 1-2 because it is too expensive to solve the

Riemann problem for system 1-1. We show in this talk that the original version of Glimm's

scheme [Gi is sufficiently robust to allow computations even when the solution leaves the
hyperbolic domain.
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An elastic string which is a circle and for which the exact solution is known, is
analysed as a two-dimensional (2D) test-case and we investigate numerical approximations of

system 1-2 computed using two versions of Glimm's scheme. According to the results of [PS],
the first version of (limm's scheme does not allow the computation of the solution when it
leaves the hyperbolic dormin to enter the mixed one because the numerical solution is not
kinematically admissible. The second version of Glimm's scheme (the original one) allows to
reconstruct a numerical solution which is kinematically admissible and dynamically admissible

on an average but not locally.

The presentation is organised as follows. In the first section, the test-problem is analysed and
we define the numerical cases studied. In the second section, we summarize the two versions of
Glimm's scheme and we recall a result given in [PSI. The numerical solutions obtained with the
first version of Glimm's scheme are presented in section 3 and those obtained with the original
version in section 4; the section 5 is devoted to a discussion about the results.

12
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A NUMERICAL METHOD FOR A CLASS OF EQUATIONS MODELLING ONE-DIMENSIONAL

MULTIPHASE FLOW

Tore Gimse

Matematisk Institutt
Universitetet i Oslo
P.B. 1053 Blindern
0316 OSLO 3
NORWAY

The general system of hyperbolic conservation laws

governing multiphase flow in one spatial dimension

uj It fi(u) " 0 =1,2,,N

is modified in the following way

We assume that the function f is a function of thei
components u1  u2 ,,,,, ui only. Hence we obtain the

equation system :

ul t + fl(ui 0

(*) u2 t + f 2 (Ul'U 2 ) , 0

uN It fN (uUU 2h'#uN) , x  0

Existence and uniqueness of the solution of this kind of

equation system (where the derivative of the flux function

df , is a lower triangular matrix) is recently shown by

Iolden and Hoegh-Krohn (HH). In their proof they bring

forth ideas of a method for constructing the solution

explicitly. These ideas are here developed as a numerical

method. They are closely related to concepts of polygonal

approximations (e.g. Dafermos fDa)) and convex-envelope

tracking (as presented in (HHH)).

With assumptions of 3-phase flow ( N=2 ) of oil,gas and

water, we also obtain stability and convergence results

for the numerical method.

The equations (*) are solved by sol-ing one equation at

the time, starting out with the first equation, which is,

of course, an ordinary scalar equation. The solution, for

any initial value function, gives us, by the methods men-

tioned above, a finite number of shocks, that is, a finite

number of u - values to be considered in equation nr. 2.

These values of u, give rise to f2 (ul, ) - functions,

upon which the solution of eq.2 is constructed. Passing
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from one function f2 (ul
i , ) till another f2 (u 1 I

should be shocks coinciding with the u -shock from u1 to

U In between these shocks we use the simple scalar al-

gorithm for a single equation : u2, t * f2 (u1 , u2 ) 0 0.

Then, the solution of equations no. 1 and 2 gives us a finite

number of u2 -shocks - some of them coinciding with u1 -shocks.

All these shocks give a sequence of f3 - functions which should

be treated as the previous f2 - sequence and so on.

Turning away from the general system of equations, we now con-

sider a system for three-phase flow

ut  + f(u) X 0

vt  * g(u,v) x  0

If u is the gas-saturation, v the oil-saturation then the

water-saturation is determined by w = I - u - v. The simpli-

fication from a general 2x2-system is based upon an assumption

that the gas-flow (Eq.1) is independent of whatever it takes

place in oil or water, while the oil-flow (Eq.2) is sensitive

to the amount of gas present.

With no gravitational effects involved we may assume (as is

commonly done) that the flux-functions f and g have an S-shaped

form:
f(u)

Furthermore that g( ,v) is strictly decreasing

g (ui ,v)

g(u2 ,V)

V

if U1 < u2 •

Treating the Riemann-problem for (**) (a general initial

value problem is decomposed into a finite number of Riemann-

problems ), that is :
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rlu , v-) if x < 0
(u,v)(x,O) : # , V4  if x > 0

where u ,v ,u, and v. are constants.

We develope a numerical method that is well-defined (the solution

is inside the phase-space : U 4 v < 1), and stable. By stability

we will mean that by making the polygonal approximation better

than a certain limit, no additional information is gained, nor

does variation increase (as has been a problem with finite

difference methods, e.g. (Te)).

The solution (as a curve in phase-space) also depends L -

continuosly upon the initial data.

Numerical examples are shown, also with some comparision to

finite difference methods.
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THE INTERACTION OF NONLINEAR WAVES

J. Glium

Courant Institute of Mathematical Sciences

New York University

New York, N. Y. 10012

Nonlinear hyperbolic waves interact in distinctive patterns. The systematic study

if nonlinear wave interactions leads to Riemann solutions and elementary waves,

which are solutions of a hyperbolic conservation law with one or two extra.continu-

ous symmetries respectively: scale invariance and time invariance (in some frame).

Striking and qualitative new wave interaction phenomena have been discovered in

conservation laws having natural motivations from science. The general feature of

this phenomena is a strong qualitative departure from linearity in the wave interac-

tions. Resonance, or coinciding wave speeds typically give rise to such phenomena,

as do anomalies in the equation oL state such as phase transitions or exothermic reac-

tive chemistry.

Two theoretical problems of a very fundamental nature will be emphasized.

They are uniqueness (entropy conditions) and length scales. Both of these problems

require stepping outside of the conservation law, the entropy condition by restricting

the class of allowed weak solutions and the length scales by breaking the scale invari-

ance of the equation through modifications of the equation itself.

The use of Riemann solutions in numerical computations by the front tracking

method will be presented. Our main conclusion is that this method has succeeded in

cases in which complex wave interactions occur.
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Convenient Stability Criteria for Difference Approximations
of Hyperbolic Initlal-Boundary Value Problems

Moshe Goldberg
Department of Mathematics

Technion-Israel Institute of Technology
Haifa 32000. Israel

Consider the first order system of hyperbolic partial differential

equations

8ufx.t)/t = Aau(x.t)/ax + Bu(x,t) + f(x,t), x ) 0. t ) 0,

where u(x,t) is the unknown vector, A a diagonal matrix of the form

A = A l 9 Az with A1 > 0 and A. < 0. B an arbitrary matrix. and

f(x,t) a given vector. The problem is well posed in L,(O,o) if initial

values

u(x,t) = u,(x) c L2(O,), x ) 0,

and boundary conditions

u,(O,t) = Su2(0,t) + g(t), t ) 0.

are prescribed. Here u, and u. are the inflow and outflow parts of u

corresponding to the partition of A. and S is a coupling matrix.

This talk describes a recent and joint effort with E. Tadmor (Nath.

Comp. 48 (1987), 503-520), in which we sharpened and extended our 1985

results in order to achieve more versatile, convenient stability criteria

for a wide class of finite difference approximations to the above initial-

boundary value problem.
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In our work the difference approximations consist of a general

difference scheme - explicit or implicit, dissipative or not, two-level or

multilevel - and boundary conditions of a wider type than discussed by us

before. As in the past, we restrict attention to the case where the

outflow components of the principal part of the boundary conditions are

translatory. i.e., determined at all boundry points by the same

coefficients. In many cases this is not a severe limitation since such

boundary conditions are commonly used in practice: and in particular. when

the numerical boundary consists of a single point, the boundary conditions

are translatory by definition.

Throughout our work we assume that the basic scheme is stable for the

pure Cauchy problem, and that the other assumptions which guarantee the

validity of the Gustafsson-Kreiss-Sundstrbm stability theory, hold. With

this in mind we raise the question of stability for the given difference

approximation.

The first step in our stability analysis is to prove that the

approximation is stable if and only if the scalar outflow components of its

principal parts are stable. Thus, our global stability question Is

reduced to that of a scalar, homogeneous approximation associated with the

elementary initial value problem

au/au aau/ax, a constant > 0, x 0 0, t 0.

u(xO) - u@(x), x 0.

4" .
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The stability criteria obtained by us for the reduced problem depend

both on the basic difference scheme and on the boundary conditions, but

very little on the Interaction between the two. Such criteria eliminate

the need to analyze the Intricate and often complicated interaction between

the basic scheme and the boundary conditions; hence providing in many

cases a convenient alternative to the well known stability criteria of

Kreiss (1968) and of Gustafsson. Kreiss and Sundstrom (1972).

Having the new criteria, we establish all our previous examples. as

well as new ones. This includes a host of dissipative and nondissipative

cases that incorporate and generalize most of the examples studied in

recent literature. To mention some of our examples, we prove stability

for:

(a) Arbitrary two-level schemes, with boundary conditions generated by

either the explicit or implicit one-sided Euler schemes.

(b) Arbitrary two-level schemes, with boundary conditions generated by

either horizontal extrapolation or by the one-sided three-level Euler

scheme.

(c) Arbitrary dissipative schemes, with boundary condition generated bY

oblique extrapolation or by the Box scheme.

(d) The Crank-Nicolson, Backward-Euler, Leap-Frog and Lax-Friedrlchs

schemes (all nondissipative), with boundary conditions generated b!

either oblique extrapolation or by the one-sided Weighted Euler

scheme.
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Hyberbolic Heat Transfer Problems
with Phase Changes

J. H. Greenberg*

This talk will focus on hyperbolic models of heat transfer
capable of supporting both "superheating" and "undercooling".
These are obtained as limits of "phase-field" models as a small
parameter tends to zero. The principal motivation for this work
is to obtain a formula for the speed of propagation of the free
boundary (either a melt or freezing interface) which depends on
the temperature ahead of the interface and the interface
curvature. Such a formula is required as a closure relation for
the limiting hyperbolic system of partial differential equatiens
in order to have a well posed problem.

The theory of the limiting hyperbolic systems will be
discussed and qualitative properties of solutions to the
hyperbolic models will be compared with solutions to classic melt
problems modelled by parabolic partial differential equations.

* Department of Mathematics

The University of Maryland

Boltimore County Campus

Cantonsvill, Maryland 21228

USA
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Unsymmetric hyperbolic systems and almost incompressible flow.

Bertil Gustafsson*

We consider systems

ut + Aux + Buy = 0

where the coefficient matrices A, B are very unsymmetric. One example

of such a system is almost incompressible flow, which is characterized

by low Mach-numbers c . We take 1/c as the degree of unsymmetry for

general systems. If T is a matrix which synnetrizes A and B , the

L2-norm fulfills

lu(t)l 11 cond{T) 11u(0)11

where

cond(T) = ITI.IT-I

If the system has a high degree of unsymmetry, the condition number is

large, and some transformation must be applied. We shall discuss this

synmmetrization procedure. In general it is not sutficient to do a direct

scaling of the dependent variables. For smooth solutions it is possible

to express the solution as an asymptotic expansion in E , and by sub-

tracting the first term, a symmetric system can be obtained. We demon-

strate how this procedure can be generalized to the non-linear Euler

equations.

The transformed system can be used as a basis for computation of almost

incompressible flow, or for incompressible flow which corresponds to the

limit c = 0 . In this case a semiimplicit method is used which is such

that the divergence is kept low automatically. Themethod requires the

solution of a linear system in each step, but the coefficient matrix is

constant and the LU-decomposition can be made once and for all. We shall

present an analysis of thismethod, and also discuss another class of

methods based on splitting of the differential operator.

* Department of Scientific Computing
Uppsala University
Sturegatan 4B
S-752 23 UPPSALA
SWEDEN
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For the Navier-Stokes equations the same principles can be applied, and

the system can be made symmetric by using the same transformation as

above. We shall present numerical experiments where the difference

scheme uses the Euler backwards method for the large hyperbolic part,

the leap-frog method for the remaining hyperbolic part and the Euler

forwards method for the parabolic part.

For singular perturbation problems of the type discussed here, the form

of the boundary conditions play an important role. Even if the problem

is well posed for any fixed c , the solution is of little use if the

problem is not well posed also for c = 0 . In other words, the estimates

of the solution must be independent of .

For the symmetrized Euler equations such boundary conditions can be easi-

ly constructed. However, for the Navier-Stokes equations a fundamental

difficulty arises. For an inflow boundary the two-dimensional compressible

equations require three conditions, while the incompressible equations

require only two. We shall show how this difficulty can be overcome. By

introducing the divergence ux + Vy , the extra boundary condition becomes

the incompressibility condition ux + vy = 0 in the limit. In this way

there is no undue restriction imposed on the limit solution.

The assumption that the fast time scale is not present in the solution

can be interpreted as an assumption of smoothness.

If the derivatives are bounded independently of c initially, they remain

bounded on any finite time interval. We shall prove that our boundary con-

ditions are such that this is the case.

Numerical results are presented, including some recent computations for

the incompressible Navier-Stokes equations.
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Multi-Grid Methods for Hyperbolic Problems

W. Hackbusch

Praktische Mathematik
Christian-Albrechts-Universit~t Kiel

D-2300 Kiel 1

Abstract. As well-known the multi-grid methods consists of two

parts, the smoothing procedure and the coarse-grid correction.
While the coarse-grid correction seems to be applicable
independent of the kind of problem, the smoothing process is
closely connected with elliptic problems. Therefore, multi-grid
programmes cannot be expected to run for hyperbolic eq'ations
without difficulties.

Indeed, it is kwown that singular perturbation problems like the
convection diffusion equation

(1) - u + c grad u = f

require an appropriate choice of the smoothing procedure in order
to achieve fast convergence. In particular for J-0, when Eq (1)
becomes an hyperbolic problem, the smoothing process must be
adapted carefully to the problem.

Often the difficulties are tried to be avoided by adding
artificial viscosity or ellipticity. Here, one has to define
clearly, what is meant by ellipticity. If the additive term is Lu
with an elliptic Operator L, the term ellipticity makes sense.
However, then one-sided differences do not nessecarily ad
(numerical) ellipticity. E.g. the backward difference for ux adds
a term Lu=uxx , where L is not elliptic (in 2D or 3D). ThiE
difference is essential for the behaviour of usual smoothing
iterations. The more ellipticity is added the less critical i5
the choice of the smoothing process. On the other hand the only
harmless additive term is a non-elliptic 2nd order derivative
with respect to the characteristic direction.

In this contribution a multi-grid method is constructed, whicl
works also for (of course stable) hyperbolic dis-rete probler,
without any ellipticity in the sense defined above. As
consequence the usual smoothing procedures may be inefficient
Instead of proposing sophisticated smoothing iterations, we app]
a completaly dififLent procedure for the coarse-grid correction
In 2D a fine grid is the union of four different coarse grids
Each coarse grid is combined with a special prolongation into th
fine grid and a restriction from the fine grid. Most of thes.
prolongations and restrictions are completely different from th
usual ones, in order to approximate also high frequencies
Since each of the coarse grids applies to a special part of th
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spectrum, this method is called the frequency decomposition
multi-grid method.

The features of the proposed method are as follows. The smoothing
iteration can be chosen to be a very simple one. On the other
hand the coarse-grid correction becomes more complicated. The V-
cycle can still be performed with O(n) operations, ;here n is
number of unknowns. Instead, the usual VI-cycle results in an
operation count of O(n*log n). The method is restricted to
uniform arid structures, i.e. it does not work for a discrete
problem in a general unstructured triangulation. However, the
method is independent of the number of dimension, therefore the
treatment of 3D equations causes no further difficulties.
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Accurate Boundary Conditions for Exterior Problems in Gas
Dynamics

Thomas Hagstrom

Department of Applied Mathematics and Statistics
SUNY at Stony Brook

Stony Brook, NY 11794
and

S. I. Hariharan
Department of Mathematical Sciences

University of Akron
Akron, 01 44325

Abstract

Interesting and important problems in gas dynamics are often posed in
exterior domains. Examples include the explosion of gas bubbles in various
media and flows external to aircraft. An approach to the numerical solution
of such problems is to restrict the computational domain to a finite region
through the introduction of an artificial boundary. For large time compu-
tations- interactions between the solution and the artificial boundary can
strongly influence the results. The focus of this paper is the development of
an accurate treatment of these conditions.

A variety of authors have invoked a principle of no reflection [2,5,6].
However, as pointed out by Gustafsson and Kreiss 13], conditions satisfied
by the exact solution may involve reflections. The current study involves
spherical waves which exhibit coupling between incoming and outgoing Rie-
mann variables. One expects this coupling to result in natural reflections
which should be accounted for in an efficient numerical treatment. Our
procedure is to develop approximate solutions to the appropriate weakly
nonlinear initial boundary value problem in the region exterior to the com-
putational domain. A condition is thus obtained which includes appropriate
reflections at the computational boundary. (It is, in some sense, a gener-
alization of the results for the linear wave equation given in [1].) Related
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works using asymptotic techniques in the derivation of numerical boundary
conditions for hyperbolic systems include 18-101 for steady state problems
and 111,121 for time dependent solutions.

The particular equations under consideration are the Euler equations for
spherically symmetric, isenttopic fluid flow;

OR + (z OR _ 2vrfl5z
t ar pr

- + (- (s)-)?
OS)) OS _ 2Vrf{p)z

at P Or pr
Here, R and S are the Riemann variables;

R G(p),
p

S = - -G(p).p

We also assume that the computational boundary is located at r L and
that the initial momentum and density satisfy z = 0 and p = p.. for r > L.

To derive the boundary conditions, we consider the initial boundary
value problem on the exterior domain r > L with boundary condition

R(L,t) = g(t).

Solving this problem yields

S(L,t) = J[g(-)].

The equations above represent an exact boundary condition at r = L. Fol-
lowing the construction presented by Whitham [7, Ch.9], we find approxi-
mate representations for Y. Three asymptotically equivalent representations
of these are:

-(LRt)L-t_)-_R___O_2L
as(L, t) orL,)

atLp( L,t )

(G(p(L.,)_G(p,.))Vr _(.
L
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Nonlinear energy estimates are established for the resulting finite domain
problem and numerical experiments are presented for an idealized weak ex-
plosion problem. Our technique is shown to yield the correct steady state
for values of L significantly smaller than those required by the nonreflecting
conditions.

Finally we propose extensions of our conditions for the truly three di-
mensional case. Tis involves the assumption that the primary direction of
propagation is the radial one. Additional conditions are required whenever
the artificial boundary is an inflow boundary. Then we suggest augmenting
the relations above with:

Om 1 f
0--- + 2 00 - 0

Oq 1 0
at+ 12 sin80

Here, m and q are the angular momenta.
Details of this work may be found in [4]. The first author was partially

supported by ICOMP, NASA Lewis Research Center and the second by
National Science Foundation grant No. DMS-8604047
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ON NUMERICAL METHODS FOR VISCOUS PERTURBATIONS
OF HYPERBOLIC CONSERVATION LAWS

Eduard Harabetian i-

We consider the numerical approximation of solutions to
viscous perturbations of genuinely nonlinear conservation laws:

(1) u t + f(u) = :(a(u)u ) , a, 0 f'2>0

When c is small, the solution develops viscous shock layers,
i.e., thin (0(c)) regions where the derivative is large (0(1/c)).
It is plausible that for an accurate resolution of such layers,
one should not take h/s too large, where h is the spacial mesh
width. Our results are the following:

a) We construct a three-point explicit scheme in conservation
form:

n+1 n n nLI = uI. + (ii. - i /2
j J j+1/2 j-I

which can be written in incremental form (see[I]):

n+l n n nU Lt=U + C ~s'A +i u  -) DI/Aj_I/,.U,
.3 +112 j+ .:_-1/2 .- /

where n nt

C C(h/c,6t/h,unu j+),
j+1/2 j l
D./.= D(h/,6t/h,un u n) and A LU -LI..

Dj-1/2 /h u j+1/2 j+1 j

Let

al=sup (a(u)), ao=inf (a (U)

6thX .t-sup (f '(u)) R=h-sup (' (u)
h U C u

We show that this scheme is second ordet- -3ccL~tate with the
equation (1) (in a precise sense), and lotal Variation Diminishing
(r.V.D. [1]) if

R
a 1 (aI/aO 

-

and the followin9 CFL condition

X(2a F-. -- F /a.1  + 1)<1

are satisfied. Here, F ( =x (1+9-) ), .9 (.() =lo.9 ( 1+x). In

particular, F is decreasing, F(l)=1, so if a(u)El, we get:

- Dep. of Mathematics, University of Michigan, Ann Arbor MI, USA
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R<1, and

X(2/R + 1)<1.

Our scheme uses the travellin9 wave solutions of (1) as
approximating tools. The approach is similar to the one introduced
by Godunov for the hyperbolic problem U21. Ou- construction also
yields the followin9 interestin9 corollary:

b)Given any thr'ee-poirnt, second order accur'ate scheme which
is TVD in the sense introduced by Harten C1] then the pair (R,X)
associated with it must satisfy the following constraints:

SR( I-X) -< 1, and

2Xao/R + < 1.

If a_=l, then

2X
< F < ,

Pellow we computed a viscouIs profile for BUrger's equation,
with R=I, X=1/7, h=.05. The computed error- indicated better than
second order convergence.
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Solution of the Euler Equations for Unsteady# Two-Dimensional,

Transonic Flow by the Approximate-Factorization Method

H. Henke

Hesserschmitt-BOlkow-Blohm GmbH
Bremen, FRG

Introduction

The numerical simulation of the aerodynamic forces acting on an
oscillating wing section in transonic flow by solving the Euler
equations is described. The method of solution is the approximate-
factorization method of Beam und Warming /1/. Since time-dependent
calculations should be performed, an implicit algorithm was deve-
loped because it allows considerably larger time-steps than explicit
schemes, and calculations must be carried out over several periods
of oscillation on airfoils. In this paper several calculations for
for steady and unsteady transonic flow cases were carried out.

Governing Equations and Method of Soluticn

For the present investigation the Euler equations are written in

curvilinear coordinates ((,n,):

where [g31[ l
gJ uU. Cp I 2uV - ,xPT 9g .. - C oYP

ee-pl u- C I pee -p) -q t

In the above relations J and V are the contravariant velocities
and J is the Jacobian of the coordinate transformation.

The method of approximate factorization of Beam and Warming /I/
was used for solving the Euler equations

aCIaqa a r (2)
- n a - nn* _j-

where A and i are the Jacobian matrices, and Di and BE are impli-
cit and explicit nonlinear damping terms defined in /2/.

The spatial derivatives were approximated by central differences
of second order accuracy, so that a 4x4 block-tridiagonal system
results. The solution of this system of equations requires rela-
tively long computational time.
A substantial reduction of the computing time is obtained by dia-
gonalizing the matrices A and I with the similarity transformatic
of the form /3p4/

A-T A T-i  ,sT A T -1
C C
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where AUk '
U-kcJ 0 ~ v-q c

vielding a system of 4 scalar equations /4P5/

Tn ( I . a A n l0 NnIT.A n IT 1  = RS4
T n- aq n q

he latter method is nonconservative in unsteady transonic flow and
as therefore only used for the calculation of steady flow with em-
edded shocks. For unsteady flow calculations scheme (2) was used.

he boundary condition at the body surface is given for q=D by the

:ondition of impermeability V=0. The density and the tangential compo-
,ent of the velocity is obtained by linear extrapolation. The pressure
:n the body contour is calculated by the normal monentum equation.
in the far-field, characteristic compatibility relations based on the
ine-dimensional characteristics similar to that given in /6/ are
,mployed. Additionally a vortex-correction formulation /7,8/ must be
taken into account, so that there is no or little change in lift due
_o the extend of the computational domain.

,he linear stability analysis shows unconditional stability for the
ipproximate-factorization method, but the amplification factor approa-
ches unity for large Courant numbers, as a result of the factorization
*,rror. The consequence is a decreasing rate of convergence with in-
.reasing time step, and in practice the Courait number is restricted
to 0(10). This restrict'rn is not so weighty for unsteady flow compu-
tation because the physi ii aspects must be taken into account.

Results

For all calculations carried out a C-type grid, given for transonic
test problems in /9/ with 14lx 2 1 points was used. The response
characteristics of the airfoil surface pressure to the airfoil mo-
tions can be depicted using Fourier representation. If the unsteady
angle of attack is expressed as a(t)=a.4Im(aoeiW*), the Fourier
series representation of the pressure coefficient can be written as
cp(x, t )=cp. (x ) E I m(cp .0(xa)oel u" ).
In Fig. I the pressure distribution is given for several time points
for a harmonically oscillating profile at a Mach-number of 0.80. For
the same profile the steady pressure distribution for M=0.85 is gi-
ven in Fig. 2a, and in Fig. 2b the first mode harmonic components
of the pressure on the lower and upper side of the profil are shown.
For the same case in Fig.3 the L2-Norm in the change of the density
(Ap/At) as a function of the time steps for steady and unsteady
flow is presented. In Fig. 4 the steady pressure distribution and the
lines of constant Mach-number for a MBB A3 profile in transonic flow
is shown. In Fig. Sa the corresponding unsteady pressure distribution
for the oscillating wing section, and in Fig. 5b the number of super-
sonic points as a function of the time-steps is used as a crude
indication of convergence (for the steady case); for the number of
time-steps n>400 the change of supersonic points for the oscillating

° airfoil can be seen. ,
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Conclusion

In this paper a method has been developed for calculating aerodynamic
forces on a wing-section oscillating harmonically in transonic In-
viscid flow. The Euler equations are taken as governing flow equa-
tions. They are solved by the approximate-factorization method of
Beam and Warming. Results have been presented for steady and un-
steady flow cases for an oscillating airfoil.
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ON SOME RECENT RESULTS FOR CONSERVATION LAWS IN ONE DIMENSION

tielge lolden

Matematisk institutt, Universitetet i Trondheim, N-7034 Trondheim-NrH, Norway

1. The equations

Ilere we will give a very short introduction to some properties of the

initial value problem

zt + F(z) x = 0

z(x,0) z0 (x) zL L- (1.1)

( = zt etc.) where z = z(x,t) = (u(x,t),v(x,t)) E R, F(z) (f(z),g(z))

and x E R, t > 0. With this narticular choice of initial value (with zL

and zR constants, ZL,ZR E R2 ) (1.1) is called the Rienvin rroblem for t,-

conservation law zt + F(z)x = 0. (1.1) exp.-sc: a conservation law since,

formally
x2

d J z(x,t)dx = F(z(xlt)) - F(z(x2 ,t)). (1 .2)
x f

Basic in the analysis is the 2x2 matrix dF(z) U V If dF(z)

two real eigcnvalues X (Z), 2(z),l(Z) < 2 (z), with corresnonding righ

eipenvectors rl(z) and r 2 (z) respectively, (1.1) is said to be hy'er ,

if A I(z) < A2(z) (1.1) is strictly hyerbolic, while (1.11) is said to

ell intic if dF(z) has no real ei'venvalues. A ftndaental pronerty of

is that even for z0 C C' the solution z = z(x,t) will in general dex .p

singularities in finite time (1], hence one has to look for weak solutie

which again raises uniqueness questions. In the context of (1.1) one imp .

additional entropy conditions to select the correct physical solution.

The solution of the Riemann nroblem consists of combinations of two elerT ary

solutions, namely shocks and rarefaction waves. A shock solution to (1.1

Lx < st

z(x,t) = . )

R , > St

where thc shocV1 sneoed s satisfli4 the Rankine-luponiot rlation



S(ZR-zL) = F(ZR) - F(ZL) (1.4)

A rarefaction wave solution to (1.1) is

zL x < Ai (zL)t

z(x,t) n( ) , Aj(zL)t < x < Aj(zR)t (1.5)

R x > Xj(zR)t

where n satisfies

T1() = r(r()), n(j(z)) = z, (j (zR)) z (1.0)

and the eigenvector r. is normalized such that VX jZ' r. (z) I . Observe

that the shock solution is a weak solution of (1.1) while the rarefaction

is an "ordinary" solution. As a basic reference for the theory of conservation

laws we refer to [1].

2. Anplications

A siniqle cons -vation law like (1 .1) has of course a n lititode of :lpli,:ati ow;

We cannot here discuss any of them in detai l, ht we a nut. ion that (L.1) 1irs

been applied e.g. to traffic flow [2], van der WIal flui.ds [3], clastic hals

143 , ultra-relat ivisti c hevj ion cOlliSion 1 51, three phase flow, in a ill;I s

medium (enhanced oil recovery) 0)

3. Mathenotical tcorL demanded hiy the _pl ica t iolns

With applications rnmging from traffic flow to elelliltary particle physics,

one would exnect considerable variation in the demands of mathemtical results

for systems (1.1). Hlowever this is not the case. We will here only discuss

in some detail the case of three phase flow ij a norous medium based on a

recent numerical analysis [7). It was found that (1.1) had a small, compact

-; -ellintic region. In addition one had to handle comnl icated behavior of the
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so-called inflection loci (the set where VW.(z).r(z) = 0, i.e. khere

genuine nonlinearity fails) near the elliptic region. In spite of this

the solution of the Riemann problem seemed to be surprisingly stable and

wellbehaved for physically relevant values of zL and zR. One can of

course argue that the existence of an elliptic regions is a result of

bad modelling. However as far as we know there is nothinp in the laws that

determine the flux function F which a priori rules out elliptic regions.

Elliptic regions also occur in [21, [31 and [41.

4. Existing mathematical theory

The first fundamental result is due te Lax [81 giving a local existence and

uniqueness theorem for (1.1) vrovided (1.1) is strictly hyperbolic and

genuinely nonlinear. Existence here means the existence of a shock and/or

rarefaction solution, uniqueness means uninueness within the class of

functions satisfying an entropy condition, and local means for zL and 7R

close. Liu [91 extended this to a global result for strictly hyperbolic

systems with the assu mtion of genuine nonlinearity replaced by strong

monotonicity conditions on the flux function.

The analysis was only recently extended to the case where dF(z) is

allowed to have degenerate eigenvalues at a single isolated noint. In this

situation it has been shown that it suffices to study flux functions F

which are qudratic polynomials in u and v.

With such r the Riemann problem can be classified into four distinct

classes [6]. By now a compleLe solution to the Riemann nroblem has been

given [101, uncovering new and surprising structures.

But the mathematical understanding of the entropy conditions involved in

terms of say travellinp waves is still rather incomnlete, depending on
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subtle global properties of systems of ordinary differential equations.

For problems of mixed ty)e there is no general mathematical theory, but

rather some examples where the problem can be analyzed riporously in

detail [11], [12]. In [121, where the elliptic region is conmnact, it is

found that the Rieirann problem always posesses a solution. However the

solution is very complicated near the elliptic region where both uniqueness

and continuity in data fail. This example sheds some light on the examile

studied in [7].

We will in the talk discuss some new results for the solut.ion of the

mixed type Riemann problem corresponding to class 11 and IV.
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Admnissible weak solution for nonlinear systemi
of conservation laws in mnixed types

L. H1siao
Academia Sinica, Institute of Matheinatics, Beijing, China

Consider a strictly hyperbolic system of conservation laws, it is well-knowni that the
classical solutx-onl of initial1 valute problem exist~s only locally in time, in general, and one has
to extend time con~cept of classical solution to weak soluttion or discontinuous solution in order
to olbtainl a globl~aly (lefilied soluition. Sine weak solutions are nmot, nniquie, omme has to use
-inissibility condlition or sometimes called entrop~y condition to p~ick out anl admmissible weak

solution which is pbhysically reasonable. There has been a gencral theory. about the existence,
uniqueness, asymptotic behavior of the admissible weak solution of Cauchy problem for the
one-space dimnicsional strictly hyperbo)lic system of conservation laws. Moreover, there
-ire dliffren~lt kinds of admissibility criteria. p~rop~osedl from either phlysical point of view or
Ina thliatical consideration and there ire certain r esults about the equivalence among these
differen t. forums of entropy condlit ins.

Howvever, what will take p~lace if the strict hyperholicity fails. Parabolic (legeneracy,
will ar1ise, which canl le found inl tHie literature inl connection with various models in applied
scienices (c.f.fl] and thme referene there). Furthermore, elliptic (domain inay occur inl thme

lihasc space, inl Other words, the syStemI Of conmservationm laws is of mixed type. For instance,
the followving qItinasihinea~r system is the simplest miodel : mixed type which can be used as
the epima tions of motion for (lynamnic elastic bar theory where the stress-leforination relation
is miot muonotonme or usedI as the equations governing isothermnal motion of a Vani der 'Waas
fluid. {t -~ -KOY) = 0()

whe11re K( I') is givenl by a nionmionotone function and the elliptic domain is a strip {1) <
v < 13)Oil the (it, v) plane because the eigenivalue is defined by V2 = K'(v).

Anmother system of mixed type wvhich ;Irises in modelling certain nonlinear adlvect, ion

processes hias m~ore compllicated structure of the elliptic domain

u(t + [Itd1 - ?]" =0{vt + [zv(a + itlJ = 0)

vlmere it, v as time space derivatives of nonnegative quantities which represent the demis f;
of twvo populations, the fugitives U tmid pursuers V. The case a i4 1 leads to an interes
exanmple of a general class of equation that changes tYTle fromn hypcirbolic to elliptic as
state variable crosses I p)taabolic manifold of codinmensiomi onme. The elliptic domain for aI I
is de~finedl by A(u, v) (it + a. - 1)2 + 4(a - 1)u < 0
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V1
and the eigenvalucs of (2) are given as -1

tU

A1 = -{u -v, +a.+ 1 -,_(,, )ii'/2 } -1
A,= 11 _ _ 4_ 1 111

A-2 = 1{,. _ Z + (i + 1 + ,, 2

(figure 11 )
wherever A(i,v) > 0.

It is an open prohleni to (Ieterinv the extent, to which tihe Caxwhry oleimi is xiea liii-
fil for suich kind of nonlinear system of mixed tyl)e. Fr- a first step, we study the(, simplest
Cauchy prolc --- RIf iiaim problem, namely

__ (1_,,_) .X < 0
(u. v)(X, ) { (u+, v-) x> 0 (3)

where (it T, v: ) are arlbitrary (coistait, states.

Since both the system ((1) or (2)) and the initial data (3) are invarinut under the
tra;sforination J' -4 .r, f -4 ot, we look for similarity soltitions v ( u(). - v v(, ) -

for which the conlition (3) beromes iuto the hbmndary condition

(,( ), '()) -- (1T, ?V) "I - :cc.

It is easy to show that. ally similarity soliution c()l.iists of co()str it st;,i t.s, iarefa cthni
waves and discoiitililitics. A discmitimitv is leined l)v 6 amikime- II I 'Ohiot coiilition which
takes the foirm (4)

- It,] --- 1 , (4)
(7e1) =[((a + 111,

foir the syst.eC (2). Wlier [w'] = it,- - wt dlenot,'s the junip of the quiliity IIV a ri)ss the
discotimmitV With siW-A (. For Mly given (o1, 'o), Ili stv ate which rani b e j()iil(d to (uh. 1n,
1 a (iscontinuity d,ines t lie shock wivc ctirve Si with eri I = 1,2 from (4). It (rat be
slowin that S, ($2) is a singl-vahuied finlimin of it (v) but is int inc. Iesiv t o e coluite'tod.

Fior instam-e, for anyiven (guvV ,I'() such that v,) " 0, -((t 1) < It(, < ). the curves S, and
S2 for the system (2) arc' sho)wn ill tile figure where the location of the ci'ding points cal 1e
Scalutubted. u I

Ani essential fcatitie of mixed type nonlinear systl'ins S1
is the possibility of shnocks l Itwen values one of which is
ill the elliptic regioh ;mi4 tllie other ill tie( hyperbolic rv-

gion. Such discoliti fliiv are routii wlyi <)5s,.rv(.d ill l.r- N
sonic flow, lit are not d(esicried by linlear syst.cm iif mixed S2
type or by purely hypebli(, nmlill-ar systemIis. It. is obvi-

ous that in order to determnie which shocks are admissible (figure 2)

onl physical grounds the classical entropy condition is not, appropriate for shocks connecting
states ill elliptic doinlIaiu with states il hyl)erbolic donaini. For handling tile cl.1itic do-
mai wIe niced to inttodroht'e n. generalized entropy condition instead( of the classical eit.ropy
comtlditii.
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D)efinition of generalized entropy condition (denoted 1)5 G.E.C.)
For any given (it- , v_~), (it+, v4 ) is sid( to be satisfied with the G.E.C. if either

I. wheni 11 varies froiii it - to ?1+, excluding ito itself, the corresponding or, is decreasing

wherever it is dlefined1, or
11. for aniy u. lbetwe('n. i. mnid u where a', is dlefinied, it. holds that [v

It is sililahr for (7-2.

For miy given (it-, ?,-), thip at~e (zi+, I)+) E S,(mi., I,-

wi cdisatisfies thec G. E.C. (-ail bi efeerliill(l. For the ab ove
e illlit. is sihowni ill fignue 3.B
It is ret liov to) (ell~e ani hliissil~e xwc';c.k solitioI. If igure 3) 0

A sinlde-valuied fiund ionl ( ), v( ) ) is cailled ai amissible weak solution of (1 )(3) or (2)( 3)
if

1. It satisfies the hilikidrv coucjtioll (11,17) -4 (tT, T -
I1. It is either n rarefictpio xwe or a constant state whierever it is smjoothi.

I111. Any (iscolitilitity saitisfies the flankine-Ilugonuot condition mid the ahove generalized
vntroIpy conditioni.

IV. 'The unage. ill the piise pinle takes thme inininnuin variat ion aiiolig all possible single-

vaudfunlction (11( * fl, 1e( )) sat isfyin~g (I) ( Ill).
By usiu, tii us dc fi Iitim o1(f ad llissille weak solo tioii. WV ate Iblie to prove that there

Cxists mla lilliquoe simiilarity a'Imissilde wea,-k solution of the prohIdcii (1) (3) ( cf. [2J) or (2)

(3) (c.f.[3] ) for ally giveul states ( m,7) nteilic dn (ci, v').

Reimark I It. fidIs to1 (ilsl ire t wticpieless for fte problemi (1 )( 3) or (2 )(3) without the

i tcl IV . ill oul1 diefintionicI wich is ai gb1 Ifl condlition. Fo r ai jltic hyp erbolic system of

cm IservaI t ioll laws ol G. C . 1 (collies inuto tile well-ktowimii t 101W cond~itioni (E) mnd the

Ilast Itenm ill the (4etil ilhl ti iif aI.ll iilis~ile wVeak solution (hisp car atitotianticall1y.

Remark 2 TI'l( 111iller of the cleineiitla iv waves inl the soltut ion can be aui nber from

I to 4 a 11(1 it is c , iii to occur 3 slmocx; Ill tite solution for thle qsstvem (1) andl 4 shocks

for Qhe s-ystini() l)e(i it is impossible to have suich kind (If dlisconttinuity for which
lhe b)oth (If values 'Ire ill elliptic doll taut. The on iy, way t(o joinl t wo sta'tes both of whlich

atev in ll i ltte (1(1 nmcill is trough a sequet ice o wav-s ill w idlich 1hrc is at, least one shock

cclim(chili! oip' side of it~s vale (llipt ic dliilid lifit. ofcl bilyerbioilicbI.ii (liii.

RIeamark i the ol cove fri: tcwoik scets to be aIdle to wvouk with ltli q'~stemis of iliXe(

typ)e if the elliptic doliiaiii Is of the followvilig proper~ty: there is at. lest ()ilc (directioni oil

(?/ r ) Staisch thtat. fl.' any giv('I stra ighut line, parallel to tis Ilitec t.i(m0, the intersection

oIf the linle with thec elliptic d nna in is finlite in the Ieiigtli.
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On Convergence of a Second Order TVD Scheme

Xiaoping Hu
Dept. of Mathematics

Nanjing Aeronautical Institute
Nanjing
P.R.C.

In his paper [1) larten presented a class of second order accurate, high-resolution TVD
schemes for hyperbolic conservation law

ut + f(u), = O x E 1R, t E R +

u(x,O) = uo(z) x E l

When taking Q(x) = 1, Harten's Scheme reads

fT~ n n + n _n'

1 2 + 1

f7 = f(uj) + 1 j

with

gj = sj+ max[O,min(%O+isj+iS- i)]

-q+A = -(1 - + u

sj+ i = sgn(+i)

2 2

Aj+ U u u+! - us

In this paper we consider only those initial value problems which have monotone initial
value function uo(x).

First, we show the stability of the scheme under the C.F.L. condition. Thus one can
deduce the existence of convergent subsequence of approximate solutions by using compactness
arguments since the total variation is uniformly bounded.

Then, we show that the limit solutions satisfy the Kruzkov's entropy condition under the
more restrictive condition

,\IIf'1., < 3 - 2v2

hence, by the uniqueness of solutions, one can conclude the convergence of the whole approximate
solution family.

The method we used can be regarded as a generalization of the method developed by
Le Roux.

[1] Ami Harten "High Resolution Schemes for hyperbolic conservation laws" J.Comp.Phys. vol
49(1983) PP.357-393.

[2] A.Y.Le Roux "A Numerical Conception of Entropy for Quasi-linear Equations"
Math. Comp. vol 31 (1977), pp.848-872.
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STRONGLY NONLINEAR HYPERBOLIC WAVES

John K. Hunter

Deptartment of Mathematics

Colorado State University

Ft. Collins

CO 80523 USA

We shall describe an asymptotic theory for solutions to hyperbolic conservation laws,

with large amplitude, rapidly varying inital data. In a short initial layer the solution

is described by a constant coefficient system of conservation laws in one space

dimension. The solution develops shocks and quickly decays. For longer times, the

solution is described by weakly nonlinear ray methods. The theory is most complete

for compactly supported initial data. Then, the initial data splits up into a number

of small amplitude N-waves, and the evolution of these N-waves for longer times is

governed by a generalised Burgers' equation. In certain situations, the theory also

applies to initial data which consists of a modulated high frequency periodic wave.
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1 i STRUCTURE OF ASYMPTOTIC STATES IN A SINGULAR SYSTEM OF CONSERVATION LAWS

Eli Isaacson Blake Temple
Department of Mathematics Department of Mathematics
University of Wyoming University of California, Davis
Laramie, Wyoming Davis, California

We consider the 2x2 system of conservation laws which model the polymer flood of

an oil reservoir. h'lese equations are strictly hyperbolic everywhere except along a curve in

state space where the wave speeds in the problem coincide. The Riernann problem and

Cauchy problem for this system were solved by the first and second authors respectively.

'The Lax characteristic condition was used as the admissibility criterion for solutions of the

ltiemann problem, and the Cauchy problem was solved by demonstrating the convergence

of the Random choice method. THere we describe the noninteracting waves to which

solutions of the Cauchy problem decay asymptotically as t - + m. In contrast to the

strictly hyperbolic case, the waves in the asymptotic solution are essentially different from

the waves in the solution of the Riemann problem with left state u L = 1o(-w) and right

state uit = u0 (+ao). (lere u0 (x) denotes the initial data for the Cauchy problem.)

Indeed, the asymptotic state can have strong nonlinear waves even when the solution of the

Riemann problem for the states at + ® is identically zero. In fact, the asyml)totic solution,

which is determined by uL, uR and the initial niaximnum value of c (the concentration of

polymer), is in fact an inadmissible solution of the Rienain problem [til , Ultj. An

immediate consequence of the analysis is that although the admissible solutions of the
lienmann problem depend continuously on uL and uR, and although each solution of the

initial value problem is L 1-lipshitz continuous in time, the initial value problem is not

well-posed ini L1. In lact, continuous dependence on initial values fails in every LP for this

one-dinmensional hyperl)olic problem. This lack of continuous dependence paralle'j the

presence of a lRayleigh-Taylor instability in the higher din.ensional problem. We imagine

that continuous dependence is recovered in two diniciisions (because of "fingering") and

also when diffusion is not neglected. lowever, to our knowledge, this is the first time such

a lack of well-posedness has been observed in a purely hyperbolic problem. In particular,

this example violates the stability result proved by 'emple for strictly hyperl)olic systems.

.'The analysis also highlights the role of the Lax admissibility criterion in
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this.nonstrictly hyperbolic problem. In contrast to the classical rarefaction shocks which

violate the Lax condition, the asymptotic solutions of the Riemann problem for this system

are not unstable solutions which never appear, but rather are solutions which are

incompatible with the Riemann data in that they spontaneously introduce polymer into the

problem. We can improve the convergence of the random choice method by replacing the

admissible solution of the Riemann problem in each cell by the asymptotic solution

determined by the right and left cell states together with the maximum value of c in each

cell. In this case, a previous analysis of the authors can be applied essentially unchanged to

obtain convergence of this modified method - and since both the original and modified

methods conserve polymer, we expect that both methods generate the same weak solution.

From this point of view, the admissible solution of the Riemann problem is unique among

all solutions of the Riemann problem which generate the polymer conserving solutions in

the random choice method, in that it depends only on left and right cell states, and not on

the additional information of the c-values in each cell. We wonder whether this

perspective can be of hell) in determining admissibility criterion for problems with more

complicated hyperbolic singularities.

\Vv note that not all the steps in the construction of the asymptotic solutions are

obtained rigorously.
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SHOCKCAPTURING STREAMLINE DIFFUSION FINITE ELEMENT METHODS
FOR HYPERBOLIC CONSERVATION LAWS

Claes Johnson, Anders Szepessy and Peter Hansbo

Mathematics Department
Chalmers University of Technology
412 96 Gteborg, Sweden

We report on our recent theoretical and computational work on
streamline diffusion finite element methods for hyperbolic conservation
laws.These methods combine good stability with high accuracy and
promise to find extensive applications in computational fluid mechanics.
We give a new interpretation of the shock-capturing term as an artificial
viscosity with viscosity coefficient depending on the residual of the finite
element solution and we show how the shock-capturing term may be used
in the theoretical analysis to obtain improved results. For example, for the
shock-capturing streamline diffusion method applied to the Burgers'
equation one can prove an a priori bound In the maximum norm, and thus
obtain a complete convergence proof In this case using compensated
compactness. We discuss the Implementation of the method and give
computational results for the time dependent compressible Euler
equations in one and two space dimensions, in the latter case with also
automatic adaptivity of the finite element mesh.
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A UNO-based Scheme for the Euler Equations of Gasdynamics with an
Arbitrary Equation of State

James R. Kamm
Science Applications International Corporation

San Diego, California, USA

We present a high resolution, characteristic-based algorithm for
calculating solutions of the Euler equations of gasdynamics with a
general equation of state. The numerical flux function we employ
uses a preprocessed approximate Riemann solver based on a cell-
centered flow representation obtained with the uniformly non-
oscillatory (UNO) approximation of Harten & Osherl. The temporal
integration of the resulting semi-discrete numerical conservation
law is performed with a second-order Runge-Kutta scheme. This
combined method, while neither as accurate nor as elaborate as
higher-order, reconstruction-based es --ntially non-oscillatory
(ENO) schemes 2 or Harten's one-dimensional sub-cell resolution
technique 3 , resolves the salient phenomena of discontinuous
solutions that the Euler equations admit and extends easily to two-
dimensional cartesian and cylindrical geometries.

A fundamental requirement of all methods that contain approximate
Riemann solvers is the accurate representation of the flow within
adjoining grV,.e!!s. This information is used to calculate the values
of the interface fluxes, which are used to advance the solution
forward in time. The UNO approximation uses the flow values in the
adjoining cells to interpolate an "optimal" cell-centered quadratic
representation of the solution. Although the solution obtained by

using this interpolant does not possess the total variation
diminishing (TVD) property, it does retain nominal second-order
accuracy at extrema, a property that is particulary desirable, e.g., in
computing two-dimensional flows with vortical structure. 0 n e
difficulty with these methods is often the resolution of contact
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discontinuities (slipstreams). We address this concern by adding a
version of the compression enhancement of Yang 4 . This
compression, augmenting the linear characteristic fields, is based
on the difference of the flow variables in adjoining cells, limited in
such a way as to inhibit unphysical under- or overshoot.

As our interests are in computing flows of real (i.e., non-polytropic)
materials, in the following discussion we assume only that the
general (convex) equation of state can be represented by the
pressure as a function of density and internal energy. This
generalization complicates the expressions for the eigenvalues and
eigenvectors of the Jacobians of the fluxes, thereby precluding the
use of Roe-averaging in the Riemann solver. In certain high
pressure, high temperature regimes, an approximation used in some
equation of state models is that the derivative of pressure with
respect to density or internal energy vanish. While these
simplifications can lead to non-physical results (e.g., zer.o
soundspeed) and must therefore be used with care, we provide a
discussion of how to incorporate these approximations into our
scheme.

Lastly, we compare sc: e of our computed results with those of a
preprocessed TVD schemes for the one-dimensional shock tube and a
two-dimensional shock-wedge interaction problem for both
polytropic arid real gas equations of state.
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Detonation Iritiation due to Shockwave-Boundary Interactions

R. Klein

Institut f~ir Allgemeine M,-chanik

R WTI-I Aachen

The ignition of an explosive gas within the L-shaped duct, as it is depicted in

Fig. I, is investigated by means of numerical simulations. A plane, initially inert

shock wave enters the configuration from the open side and eventually ignites the

mixture. This model problem is related to knock damage in internal con-.-stion

engines. We believe, that shock waves, which may be initiated by autoignition

within the unburnt end gas, can penetrate into the narrow gap between the piston

and the cylinder wall, as is sketched in Fig. lb. If there is a combustible mixture

within the gap, then after interactions of the shock with the boundary walls the

temperatures locally become high enough to ignite the mixture and to lead to

coupled . ,ockwave-reaction structures.

Neglecting molecular transport and real gas effects, we describe the

gasdynamic properties of the system by means of the two-dimensional Euler

equations for an ideal gas with constant specific heats. We account for the

chemical heat release by supplying a source term to the conservation equation for

thermal and kinetic energy. The reaction progress is controlled by means of an

additional balance equation for a reaction progress variable. With an appropriate

choice of the reaction rate expression and of the relation between the source

terms of the energy- and of the reaction progress equations it is possible to

simulate different types of model chemistry.

In particular a two-reaction model, similar to that of Korobieinikov et a. /I/

can be realized, for which usually two separate reaction progress equations are

employed (see Taki and Fujiwara /2/). By prescribing suitable initial conditions it

is possible to reduce this system to a one-step irreversible reaction with Arrhenius

kinetics.

The numerical scheme used here is an extended two-step Godunov-type scheme

for the one-dimensional Euler equations with source terms. After introduction of

limited piecewise linear distributions within the cells of the numerical grid, an

advance in time by half a time step is performed using the characteristic form of

the governing equations. This approach is nearly analogous to that of Colella and
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Glaz /3/. With the pair of thermodynamic states, obtained at each cell interface

in this way, we calculate nunnerical fluxes using Einfeldt's /4/ approximate

Riemann-solver. In order to account for the source terms within the balance

equations a second order 'source wave splitting! approach is employed, which is

based on a suggestion of Roe /5/. The scheme is extended to two dimensions by

means of directional operator splitting applied on a cartesian numerical grid. In

order to avoid extensive nunerical dissipation in the vicinity of the convex corner,

which would provoke artificial ignition due to unphy-,ical temperature increases,

we impose special corner flow boundary conditions. These were presented ~ecently
in /6/ together with the construction of the 'source wave splitting' method.

The results of an example calculation, obtained with the one-step Arrhenius

model on a 160x20/+/30xgO/-cell grid are given in Figs. 2. They show sequential

plots of pressure contour lines for a typical ignition process. The sequence starts a

short time after the incident shock has been reflected at the opposite wall. In the

present regime of the chemical model parameters the gas is ignited rapidly after

this first reflection. Correspondingly Fig. 2a shows the leading reflected shock

wave as well as the strong pressure gradients, which indicate a thermal runaway

next to the wall. In Fig. 2b the reaction zone has .:,tched up the inert shock and

the resulting coupled shock-reaction front is seen as it runs back towards the open

side of the duct and towards the convex corner. In Figs. 2cd this wave is partially

reflected again and, where it meets the leading shock at the wall, a very high

pressure peak is formed. This peak develops into a typical triple wave

configuration. An inert transverse shock within the burnt gas, which traverses the

channel and is re-reflected between the walls, devides the leading reacting shock

front into a weak and a strong section, corresponding to the temperature and

pressure increases that appear across this transverse wave. The triple shock

structure is maintained while the whole configuration propagates down the duct

(Figs. 2e,f). It is believed, that the very high pressures and temperatures, which

appear when the triple wave hits the walls, are an important ingredient of the

mechanisms of knock damage.

The typical pattern of shock-reaction fronts described here was also observed

experimentally within plane, two-dimensional detonation waves by Strehlow and

Fernandez /7/ and they were obtained by means of nnnerical simulations by Taki

and Fujiwara /2/, Oran et al. /8/ and recently by Schoeffel /9/. Thus our results

reveal an interesting mechanism for the detonation initiation due to shockwave

boundary interactions. However, it depends on the relations between the

characteristic detonation cell sizes and the width of the duct, whether a fully
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eveloped deton-tion could establish or whether the wave structures would decay,

when they were followed over longer travelling distances within a continued

straight channel (see e.g. Williams/10/).

In the pre.entation at first a brief summary of the corner flow boundary

conditions and of the 'source-wave-splitting scheme will be given together with

the results of some test calculations. The emphasis will then be posed on the

complete model problem and on the discussion of different patterns of the ignition

processes within the L-shaped duct.
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a) b

Fig. I The L-shaped duct a) and its counterpart in an internal combustion engine b)

a)b) C) d) e) f)

Fig. 2: Development of a cellular detonation due to shockwave-boundary interactions.
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TWO DIMENSIONAL RIEMANN PROBLEMS AND ITS APPLICATIONS:
A CONFERENCE REPORT

CHRISTIAN KLINGENBERG
Dept. of Applied Mathematics, University of Heidelberg

Im Neuenheimer Feld 294, 6900 Heidelberg, W. GERMANY

We shall consider nonlinear hyperbolic equations in conservation

form

() ut + V.f(u) = 0

u(O,x,y) = U0

Even for smooth initial data u, the solution to (1) in general will
lead to jump discontinuities in the solution.

We are interested in the stucture of the solution. The set of jump
discontinuities may become quite complicated without any apriori
assumptions on the flux function f and initial data.

This is of some importance, when solving (1) numerically. I shall
give two examples.

a) One can obtain high resolution by using the method of front
tracking. There one marks the jump discontinuities (the front) in the
soluzion by special grid points, which evolve dynamically with the
front. From one time step to the next first the front gets moved and
the states next to the front get updated. The time step gets finished by
solving initial/boundary value problems in the smooth regions between
the jump discontinuities using standard finite difference methods.
Clearly it is necessary for this approach to qualitatively understand
the structure of the jump discontinuities, see EGK].

b) When using finite difference schemes in more than one space
dimension, one time step usually consists of sequentially applying a
one dimensional scheme in each time direction. This has disadvantages.
Roe's CR1] work indicates that the more accurate the one dimensional
scheme is, the less accurate the two dimensional split scheme will be.
Currently the development of methods which are not relying on the
direction of the space axes is under way, e.g. following Roe CR2].
Again a knowledge about the geometry of the jump discontinuities is
helpfull for this approach.

In this note we shall consider selfsimilar solutions of (1),
this then reduces the number of independent variables by one. In
particular we shall consider Riemann problems:

Definition: If (1) together with initial data u, is invariant
under

cx, cy, ct )-- ( x, y, t ) , c > 0

then it is called a Riemann problem. Thus initial data which is piece-
wise constant in sectors meeting at the origin together with (1)
constituts a Riemann problem.

Definition: A Riemann solution which is invariant under the group
action

x , y , t )X ( x +r y +; t + r

is an elementary wave with velocity
We believe that the solution to Riemahn problems are described
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qualitatively by the following picture: it consists of elementary
waves, moving apart each with their own distinct velocity. These
elementary waves are then connected by jump surfaces. We mention in
passing that one can give a short list of these generic types of such
intersection points for two dimensional gas dynamics, LKJ,[GK].

cur two dimensional Riemann Problems for scalar conservation laws

u + f (u) + g(u)3 = 0

we have explicitly constructed the solution CHK] for generic
cases. We found that the solution is piecewise smooth. In Fig. 1
we give a list of pieces that this solution is made of. We believe
that this constitutes a complete list for polynomial flux functions
f and g. In Fig. 2 we give an example of a solution to illustrate
how it is composed of the pieces mentioned above.

These constructions lead us to a numerical two dimensional
Riemann solver for a certain class of Riemann problems. Suppose we
have two shock waves approaching each other, see Fig. 3. At their
time of intersection they approximately give rise to a two dimensional
Riemann problem, Fig. 4. We think of this as two waves giving rise
to a wave fan. Thus in analogy to the time dependent one dimensional
case of two waves crossing, there the "timelike" direction
corresponds here to a "direction of causality", say5 . In such a way
we introduce new coordintes ,2 . These transform our system (1) to
the problem

P(u) Q(u)

P = P(u-) , < 0
P = P(U+) .17 > 0

For scalar equations and assuming that d P/du > 0, we have implemented
a numerical Riemann solver by constructing numerically the OleinzJ'
convex hull, see Fig. 5. The solution then gets transformed bach to
the x - y plane to give a two dimensional Riemann solution. Thir
constituts a helpful tool for a front tracking algorithm,EKZ3.
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Fig. 1 The solution to ue  f(u), + g(u) = 0 with initial data

constant in the wedges we believe is genericaly made up

of the following pieces in the x - y plane:

// /

/ / l /

Parallel charactertistics, with the Characteristics meet along
constant state as a special case. = f'(u) , g'(u)

i'i:.,i/ /~ ,- -/

Contanct discontinuities (c.d.), with Curved jumps with rarefactic

one sided c.d. as a special case or waves impinging on both side
jumps with constant states on both The characteristics may be

sides. tangential on one side or ma
represent constant states.

Two jumps meet along Jump triple points.

Fig. 2 The solution to ut + (u-u3 ) + (u -u) = 0 with initial

data given in i) is shown in ii).
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Fig. 3 Two shock waves approaching each other.

\ ///
\\\/

\, /

Fig. 4 The two dimensional Riemann problem which arises fron
Fig. 3 after the intersection of the waves.

(14

Fig. 5 The numerical construction of the convex hull to the
graph of Q versus P, which gives the solution to the

Riemann problem. In this case, we first determine the minimum of lin,
1-1, 1-2, 1-3, 1-4, 1-5. After having found this to be line 1-2, we
continue our search with minimizing slopes of 2-1, 2-2, 2-3, which
in this case is 2-2. This then gives the convex hull.
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Upwind Schemes for the Navier-Stokes Equations

Barry Koren
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

INrRODUCTION
A computational method is presented for the steady, 2D, compressible Navier-Stokes equations. The
method is hybrid in the sense that it can also be used for the Euler equations. It is based on a method
developed for steady Euler flows [4]. In this Euler flow method an upwind finite volume technique
was used. The same technique appears to be suitable for the convective terms in the Navier-Stokes
equations. The discretization used for the diffusive terms is the central finite volume technique out-
lined in [131.
To solve the nonlinear system of discretized equations, symmetric point Gauss-Seidel relaxation is
used in which one or more Newton steps are used for the collective relaxation of the four unknowns
in each finite volume. Point Gauss-Seidel relaxation is simple and robust but needs an acceleration.
A suitable acceleration technique is found in nonlinear multigrid [7]. The difficulty in inverting a
2nd-order accurate operator is by-passed by introducing defect correction as an outer iteration for the
nonlinear multigrid cycling. The defect correction process may be either standard, damped or mixed
with an additional smoother [8].
In the present paper the emphasis lies on the upwind discretization of the convective terms in the
Navier-Stokes equations.

DIsCREriZATION OF CONVECTIVE TERMS
The steady, 2D, compressible Navier-Stokes equations are discretized in the form

ax ay Re I aJ (I)

with q the state vector of conservative quantities, f(q) and g(q) the convective flux vectors, and r(q)
and s(q) the diffusive flux vectors. To allow Euler flow (I/Re - 0 ) solutions with discontinuities,
the equations are discretized in the integral form. A straightforward and simple discretization of the
integral form is obtained by subdividing the integration region Q into finite volumes ij, and by
requiring that the conservation laws hold for each finite volume separately :

(f(q)nI + g(q)n)ds - -I I (r(q)n. + s(q)ny)ds = 0, Vi,j. (2)

For convection dominated flows, our objective, a proper evaluation of the convective flux vectors is of
paramount importance. Based on previous experience [2, 3, 4, 5, 6, 9, 16], for this we prefer an
upwind approach. Along each finite volume wall we assume the convective flux vector to be constant,
and to be determined by a constant left and right state only.

Approximation of left and right state
The approximation of the left and right state determines the accuracy of the convective discretization.
First- and higher-order accurate discretizations can be made [2]. Considering for instance the numeri-
cal flux function (f](q)). f. =. i f(q+ ,p q'+ %,), where the superscripts I and r refer to the left and
right side of volume wall di, + 1.4 (fig. I), first-order accuracy is obtained by taking

q1+ %4 = q4, and (3a)

q' + I,j = q, + 1,j. (3b)

Higher-order accuracy can simply be obtained with the K-schemes as introduced by van Leer [10]:

+ K qi+ ,j - q,,) + K(q., - - .j), and (4a)

4 4,. +. = qi +1.1 + !±.t.q.J - q,, +,,) + 1-T-(qi +,4 - q, +2.j), (4b) .4

with KER ranging from K = - I (fully one-sided upwind) to i = I (central).
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An optimal value for iK is found by giving an error analysis, using as model equation
i u u .~ a2u a2u.5au +  j U+  aU+ L (0.

ax ay ay y2

On a grid with constant mesh size h, a finite volume discretization which uses the K-approximation for
the convective terms and which is second-order central for the diffusive terms, yields as modified
equation

au + u u + 2u +-u. + h2 K-I/3 a3u a3u (6)
ax ay 3X Xay a 4 a3 a

3(K-1 - I -L) a a4u)+ h 8 12 h aX4 y4 1

+ O(h4) = 0.

Assuming the reliability of the underlying Taylor series expansion, the modified equation clearly
shows that the highest accuracy (third-order) is obtained for K= 1/3 (upwind biased), and the lowest
false diffusion for K = I (central). Euler flow computations [61 have shown that for stability reasons the
upwind biased approximation is to be preferred above the central approximation.
To avoid spurious non-monotonicity, a new limiter is constructed for the K= 1/3 approximation. Let
qi+%.j and q;%,j be the kth component (k= 1,2,3,4) of q?+. respectively q4+,j. Then a limited
left and right state can be written as

,,. 2 = ± . - q)I.), and (7a)

q,j = q() + -44 IR(.j X - qNA.j), (7b)

with 4(R) the limiter considered, and R(k) the ratio

( k) = gII.]- 8))R,,., q. (8)

Using this notation, the limiter constructed for the K= 1/3 approximation reads

R +2R2
(R)- 2-R +2R2  (9)

Solution of ID Riemann problem
Osher's scheme [12J has been preferred so far for the approximate solution of the standard ID
Riemann problem thus obtained. Osher's scheme has been chosen because of: (i) its continuous
differentiability, and (ii) its consistent treatment of boundary conditions. (The continuous
differentiability guarantees the applicability of a Newton type solution technique, which is what we
make use of.) The question arises whether it is still a good choice to use Osher's scheme when
diffusion also has to be modelled. Another, more widespread upwind scheme used in Navier-Stokes
codes is van Leer's flux splitting scheme 110, 14, 15, 181. Reasons for its popularity are: (i) its likewise
continuous differentiability, and (ii) its simplicity. The latter property is generally believed to be in
contrast with Osher's scheme. (Recent work may help to reduce this difference, see e.g. 1171.) A
detailed error analysis is given for both schemes. The analysis is confined to the steady, 2D, isentropic
Euler equations for a perfect mono-atomic gas:

f(g). + Aiql =0, with (10)
ax ay

f(q)= P(u2+C2) g(q)=pu • ( I)
Ptu vC, 1  p(2 +c2)

(Notice that for an isentropic, perfect and mono-atomic gas c is a constant.) For a subsonic flow and
a first-order accurate finite volume discretization on a grid with constant mesh size h, the system of
modified equations is derived for both Osher's and van Leer's scheme. For both systems we consider a
subsonic shear flow (the new element) along a flat plate. For this Lamb's approximate solution is
used. Substitution of Lamb's solution into the modified equation yields at the boundary layer edge a
discretization error ratio as given in fig. 2. In this figure, M denotes the Mach number at the boun-
dary layer edge. The analysis gives some evidence for the superiority of Osher's scheme above van
Leer's scheme, when dealing with shear flows. Results are presented which show this superiority for
the Navier-Stokes equations indeed.
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Midmont /Iplate ffuioinlaes...wih ~ ou
10 comipare (K)her's and %in) I ccr\N Nchcnie. we consider f usoi lat plte1(mil nonsou

tionl (thle Iflasto s soltioI n). Will ft ile li rst -o rder a pproxim a tio n, we performi fir hoth wisheines anl cxper-
incni " sith h-~ (mesh si/c) and Re-vatilaitiot. Ini all computations we USe gridS compo 1sed of square
finlite vi 'mines. Results obtained ate 6iven in It!. 3. I heN clearly show% thle sulperiorits of Osher's
SCiteniC Linder hard conditions (1lst-order approximation, high %alue of Re/fl.

.Siq'crxonic flat p/ate ffinv
A\ standard test cawe for Nay icr-Stokes codes is the flat plate shiock wavne - boundary las er experiment
perf-srnted hN, Ilakk mcii et al. at Re -2.96 10~ 11l. A nice feature of thle present code is its possihilitN
to optimi/e a gridl for convection separately. F~or this test ease this leads via thle grid shown in fig. 4a
to the one in fig. 4h. -fhe corresponding inviscid StirfaLC pressure distributions ats obtained with
Osher's scheme. and with successively the first-order, thle non-limited and the limited K = 1 / 3
approxinationm. aie given in fig. 5. Navier-Stokes results obtained on the oblique grid are given in fig.
6. (learlv visilble here is tile g-ood agzreemnent of thle (limited) second-order results ssith tile experimen-
tal results.

Ri 1-1 RI NCUS
1. .Rl. I lAkKtN;-N. 1. (IRI1l1tR. L.. R IttIING AND) S.S. AHARRANI;I. li9 4 1wlte, t'IMlon (!f ant

Obliquc S/incA If tave withi a La,,,inar Boundary laver. NASA-memcrorandum i 2-18-59 W.
2. P.W. I IUMKIR ( 1986). lDe/ect Correction and Higher Order Schenmes fir tlhe li Grid .SOlution of'

th icai Ele quations. Proceedings of (lie 2nd European Conference on Multigrid

3. - --- AND B. KoRSN (1997). A Non-linear Afiultq,'rid Afet/iod fir the( Stead' lder Equations.
Proceedings (iAMM-Workshop on the Numerical Solution of C onipressible Fuler lows, Roc-
(luelteourt. 1986. Notes on Numerical Fluid Mechanics xx. Vieweg. Braunschweig (to appear).

4.-------- AND) S.P. SrKRIFUSE (19,86). 4ithple Grid and Osmer'S Schemie for the Efficient Solution
o.f the Steads- Eider Equations. AppI. Num. Math. 2. 475-493.

5. B. KORI:N (1988). Eler Flowt Solutions for a Transonic H'ind Tunnel Sect ion. Proceedings V-
Aerodynamic Seminar. Aachen. 1987 (to appear).

6. ~--(1988). Dce'ctl ',rrection and AftultigridfJor anl Efficiet (and Alccurate Comiputation of
,1:rlinl I-lows. J, ('onput. 0- vs. (to appear).

7.._-_ - ( (1988). First-On/er UPwiind Schemes and Atultigrid for the Steadl- Nat-ier-Stokes Equal-
tions. CWI report NM-R88xx, Amsterdam (to appear).

S. .-.... _.-. (1988). Iligher-Order Upwind Scheines and lDe frt Correction for the Steadt, Navier-
stok-v E'quations. (WI report NM-R88vy. Amsterdam (to appear).

9. AND-- r~ STP. SIT'lKRFUSE (1987). hligrid and IDefict Correction for Ilhe EJf/icient Soltion
of the Steadi- Euler Equations. Proceedings of thie 25th Meeting of the Dutch Association for
Numerical Fluid Mechanics, D~elft, 1986. Notes onl Numerical Fluid Mechanics 17, Vieweg.
Blraunschweig.

It0. 1). VAN LEMt~ (1982). fluix- I 'etor Slplitting for the Eler Equations. Proceedings osf the 8th Inter-
national Conference on Numerical Methods in Fluid Dynamics, Aachen. 1982. Lecture Notes in
P'hysics 170, Springer. Berlin.

II -. - (1985). L4'ntind-IDiffrence Afet/wds for /lerotvantic P'roblemis govered bi the Euler
Equations. P~roceeding% of the 15th AMS-SIAM Summer Seminar on Applied Mathematics,
Scripps Institution of Oceanography, 1983. Lectures in Applied M~athematics 22. AMS. Provi-
dence. Rhode Island.

12. S. OSItIR AND) F. SOLOMON (1982). Uptiind-I~lfl'rnce Schemnesfinr Ili-perbolic Systems of Con-
.verration Law-s. Math. Comp. 38. 339-374.

13. R. PIEvRnt ANI T.D. 'rAYLOR (1983). C~omputational Methods *f;)r F'lid Flow. Springer. Berlin.
14. W. SCIIR6I1t: AND) 1). HIANEtL (1987). An Unfactored Implicit Schemne with Multigrid Accelera-

tion fir the Solution oif the Narier-Stokes Equations. Computers and Fluids 15. 313-336.
IS. G. SHAW AND P). WtlSSITItNG (1986). Mfultigrid Solttion of the ('ompresvsible Navier-Stokes Equa-

tions on a Vector (iomputer. Proceedings of the 10th International Conference on Numerical
Methods in Fluid Dynamics. Bciing. 1986. Lecture Notes in Physics 264. Springer, Berlin.

16. S. P. SrtUI'REUtSt (1987). Mistigrid Soluion of Monotone Second-Order 1)iscretizations of lb-pler-
babei Conservationt Liws. Math. C'omp. 49. 135-155.

17. ~---(1987). At ultigrid Solution of the Steadr Euler Equations. Ph.l).-thesis, (WI. Amster-
dam.

18.....ItMAS Ami) R.WV. WAI I RS (1995). UpwAind Relaxation .1 ignrfthms tor the ktai-ter-Sto~es

Ihquatns. A lAA- pa. 6-I1501. 16



K.

0Q

CI

a.A

CL

a. On rectangular grid. At

0!1.5 2'

C3

,fl

C,

a.

b. On oblique grid.

0 0. IS 2

Fig. 5. Inviscid surface pressure distributions supersonic flat plate flow
(0: first-order, A: non-limited higher-order, 0: limited higher-order).
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NOMI~AL RErLECTION-TRANSMISSION OF SHOCK WAVES ON A PLANE

INTERFACE BETWEEN TWO RUBBER-LIKE MEDIA.

Slawomir KOSIISKI
Technical University L6dz, POLAND

Using 8 semi-inverse method proposed by Wright L1.1 a normal reflection and

transmission or a finite elastic plane shock gave, at a plane interface of two

rigidly coupled rubber-like elastic solids is examined.In this method the inci-

dent shock wave is given a priori.

Consider an unbouded medium consisting of two elastic half-spaces of diffe-

rent material properties, joined along the plane x2= O.Suppose that a plane

shock wave of strength m , unit normal N and polarisation vector d 'pro-
a ~0 -O

pagates in the half-space x 2 >O0 with speed Vo (Fig.1).It is assumed that the

material solids in front of the shock are ur.-trained and at rest.Such a wave has

displacement components in the x 3  direction anly.

Both material solids are isotropic incompressible and are defined by the con-

stitutive equation in the form

(1) WO 1 1) = ~(I1,I) = C (11  3) + C (1 3) + C (1 9)

where 1I2 invariants of the left Cauchy-Green strain tensor 8 t -5 densit)

C, C2 , C3  -elastic constants.

A

~0

z___ F -

F : L .I 14 ( o O )

x 2  0 X2

Fig,1 Incident shock wave Fig, 2 Assumed shock raflsbtior.-
transmission pattern.
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It is assumed ( [1] ), that the constant state behind the incident shock

(ahead of the transmitted wave) and the state at the interface and below "30

(above "i") compatible with the interface conditions, are connected by means of

a sequence of one parameter families of reflectod (transmitted) simple waves and

constant state regions (Fig.2).

The equation of motion (propagation condition) and the compatibility condition

in the region of the simple wave take the form ( [11 , C31 )

(2) ( Q* U28ij + uNP 0

where Q i= QIj Qkj nkni 0 N, Nr JP

Qij , ij are the components of the acousLic t(,nsor and the reduced acoustic ten-

sor respectively, the prime indicates differentiation with respect to 'XL- simple
wave parameter, x p u, are components of the deformation gradient, and par-

ticle velocity. U denotes the speed of propagation.The constraint of incompressi-

bility restricts the propagating waves to transverse waves only.In general, the

reflection-transmission problem may have no solution in terms of simple waves, as

there are at most possible two families of reflected (transmitted) simple waves

in such a case ; this means that there are four free parameterst with six interface

conditions to be meet ( particle velocity vector and stress vector must be conti-

nuous from one medium to the other).However solutions may exist for some types of

incompressible materials, with particular defozmation, symmetry and interface

conditions.In this paper we examine such special. case.

Since the motion is restricted to one dimension we assume that the incident pla-

ne shock wave generates at the interface a single (instead of two) reflected and

single transmitted simple wave with a direction of propagation perpendicular to the

interface.The propagation condition for single inflected and single transmitted

simple wave (2) is reduced to a single equatiori

12
(3) 3232 - U2 )u = 0 or ( 3232 " ) = 0

respectively. The symbol "^" serves here to label the field quantities connected

with the transmitted wave.The characteristic root U ( U ) is a real single valued

function of the component x 32 ) and it represent the speed of simple wave.

The reflection-transmission problem then reduces to an initial boundary value prob-

lam for ordinary differential equations governing the variation of the deformation

gradient ( x32 ) and particle velocity ( u3 ) in the region of reflected (transmit-

ted) *wve.We assume U'" -U and '^ U and from (2) we obtain x'2= 1 x 1 
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These equations can be integrated directly.Substiltution of solution for x32

( '32 ) into expression for 63232 3 32 ) gives the reflected (transmitted)

wave speed as a function of the wave parameter.

a) b)

F

" ,)1)
X1 

X

2x 2

Fig. 3 Shock reflection-transmisasiin pattern1s

However for U(OL) and U j) to define a simple wave it must be a decreasing

function of the wave parameter X. ((t) varying from 0 to the terminal
value it =(A),If U ( U ) were an increising function of /k 9

the following wavelets would travel faster than the preceding ones and in due

course a shock wave would be formed, [13 1 C2. .Equation of motion are now replaced

by jump conditions.In all cases the reflection solution is depending on the proper-

ties of the both material solidss either a single simple wave or a shock wave, when

the transmitted wave is always the single simple wave (rig.3).The conditions of

continuity of the velocity and stress field at thn. interfae give us a system of

two nontrivial independent nonlinear algebraic bqtttions for the transmitted shock

wave strength 'm and the reflected shock wave strength m ( or the final value

-ka/ of the parameter /X in the reflected simple wave).

The numerical analysis shows tiat for two different pairs of materials can exist

the reflected (transmitted) wave having the same parameters, while the parameters

of the transmitted (reflected) wave are different .The wave reflection pattern :

shock or simple wave depends on the elastic properties of both joined materials

and their succesion.The main part of energy of the incident shock wave is used to
l formation of the transmitted waveSimply condition for optimal transmission, when

! the reflected wave is absent, is derived.

; The anaogous but linearized boundary value pi-oblem is considered in 4 by :

74
Im I

using the Touplnig.3nshocnk refletionstransmision pattrnalsig a1utine

Howitue ve s. ()adUu o eieasml aeitms eadcesn



R e f e r e n c e s

E1 T.W. Wright , Reflection of oblique shock wnves in elastic solids.
lnt. 3. Solids Structures , vol. 7 , 161-181, (1971).

[21 P. Lax , Hyperbolic systems of conservation laws I1.
Comm. Pure Appl. Math* 10 , 537-5669 (1957).

[31 B.Duszczyk, S.Kosi6ski, Z.Wesolowski , Reflsiction of oblique shock waves
in incompressible elastic solids.
J. Austral. Math, Soc. Ser B 27 , 31-47 , (1985).

[4] S. Kosi6ski , Normal reflection and transmiinsion qi plane shock waves in
nonlinear elastic material.

Engineering Transactions , 34, 4 , 483-502, (1986).

175



Uniqueness of weamk soIuti r. to hyperbolic

dissipative systems: of balance laws

Witold Kosifiski, Polish Academy of Sciences, IPPT, Warsaw

.alanace laws are co!!:'ion fe.tures of individual theories

of cont inuum physics. The 1lws are supplemented with

constitutive relations which charcter'ize the particular medium

in auestion vv relating the valte's of the mein vector field U

to the flux f arid the Supply teri Bl. We as.sume the relations

are srnooth 'Ulrctio.-s and the balance laws lead to a system of

I-st order POfC's:

d
(1) ---U - Div f(U) = B(Utx), (t, x)e 7P C E

Solutions to the system are restricted by the unilateral

constraint, which e.m, reses the second law of t:hermodynamics

Lcf. I,2,6],

(2) L i(U) +Div k(U) ? r(U,t,x),
dt

where 77 represents the entropy function, k - the entropy flux

vector arid r --- the entropy supply term. Th3 terms B and r

appearing in (I) and (2) iariifest existing in the medium of

non-differential viscous effects. Viscosity due to

nonhol.ogeneity of equaticns is typical in the thermodynamics

with hidden ( internal state ) variables which have to describe

viscous, dissipative properties of matter [cf.3,Sec.20].

In the paper we convire our!self to the case when 7) is a

strictlv concave function on a cconvex set M in the hodograoh

spice E'. Then (1) can be written as a symmetric system in the

new variable U' given by the Legandre transformation of T) [1].

Moreover, because of the constraint (2), the system (1)

possesses the supplementary balance law for entropy

0
(3) 77(U) +Div k(U) = Vy)(U) B(U,tx).

To establish the uniqueness and continuous dependence results

for weak, distributional, solutions of Cauch,, problem governed

by (1) and (2), the class BV(7) is introducedi, which is the

subset of regular distributions 7whose first order derivatives
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are zero order distributions, i.e. distributions represented by

regular, locally finite, Borel measures (4]. In this class a

weak solution Is defined with the help of the function

(4) S(U,V):= K(Y) - K(U) + i(V) ( F(U) - F(V)),

where K(U):= (n(U), k(U))), F(U):= (U, f(U)).

A function Uc BV(P,Em ) is called a weak solution to (1-2)

if is H na.e.bounded and for any constant v,ctor Ce D and a

bounded set 9 with finite perimeter the ineqluality

(5) div S(UC)(3) : X(Vi7(C) - Vi7(U))'BU,y)dn+ I (y)

holds, where y = (t,x), H n denotes the n-D Hlausdorff measure on

En + 1 in which the Lebesgue measure Xn+1 is defined. Here div is

a divergence operator (identyfied with a Borel scalar measure)
n+ 1

in E . It is proved that ineq.(5) is equivalent to eqs (1)

and (2), which have to be satisfied in the sense of measure,

and to the Rankine-jugoniot and entropy increase conditions -

at points of jumps of U. By the ad n ssibte weak solution to

(1-2) we understand that weak solution to (1-2) which is a

limit of a boundedly and a.e.convergent sequence (k of

regular (smooth) solutions to the parabolizod version of (1),

in which f(U) is replaced by

(6) f'(VkGrad Vk)):= f(Vk) - CkGrad V k' lim Ck= 0.
k->OD

By a Wea)t solution to the Cauchy problim

ndiv F(U) = B(U,y), U(0,x) = g(x), y =(tx), xe E , tE (0,T)

we mean a weak solution to (1-2), which satisfies the initial

condition in the sense of means, i.e. lim U(t,x) g(x).

Xa.e.on E n . Here U denotes the symmmetric mean value of U (4].

The general strategy of the proof of the continuous -

dependence theorem is the same as in [2) and was inspired by

[5]. The assumptions on 1 are essential for the derivation of

an evolutionary inequality in terms of the measure div S(U,V),

when U is a weak solution to the primitive hyperbolic problem

while V is a regular solution to the parabolized one.

Integrating the inequality over a space-time frustum we end up

with a Gronwall type inequality, already discussed and used In I
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(2.6j. It is proved that an admissible weak solution of the

Cauchy problem is unique in *BV(P,Em), provided (CkP AV)}O0C
2 km

bounded set of L 2(7P,E m) and the spacial gradients of V kare in

L ODlc(Y,E M). The last condition is related to the method used

in the proof and it may be released, according to our

conjecture
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Numerical Solution of the Euler Equations Used for Simulation
of 2D and 3D Steady Transonic Flows

K. Kozel*, N. Nhac**, M. Vav-incovi*

The work deals with numerical solution of the system of Euler equations for the case of
2D steady transonic flows in a channel or through a cascade and 3D steady transonic flows
in a channel.

I. 2D steady transonic flows in a chaniel and through a cascade

Consider 2D system of Euler equations in conservation form

T.) + F(TV), + G(TV) 1 = (1)

where TV = col lip, pu, pv,ejl; (u,v) is velocity vector, p is density, c is energy per unit
volume. Weak solution of (1) is based on fulfilling following relation

12

J IVId x2 y= -J{? Fdy-Gdx dt (2)

D tj OD

for every suitable Jordan curve OD C Q, D = Int OD, Vt 1 , t2 > 0 and W(t, x, y) piecewise
smooth for every t > 0. Consider finite vohune form of numerical solution. Difference
scheme is fulfilling integral relation (2) for each computational cell D,,, -n( DI( )("1ntI

D(kI) = [x", y"1, rewritten in the form

Jim = ff dxdy, At=t2 -, -- t,"+' _-t
DD

1 n+ I 1V"n At 9d
Vn " - '" - dy - (3)

where W,n is mean value of TV in computational cell D,,, Y, 9 are approximations of F(TV),
G(W) along 0D,,,. Steady state is considered to fulfil integral relation (3) for TV, ",
0.

For numerical solution we use time dependent method, steady state is considered for
t -- oo and steady boundary conditions. Mac Cormack explicit difference schemne [2 in

* Dept. of Comp. Techniques and Inforinatics, Faculty ,,f Mecli. Eng. TU Prague

Dept. of Mathematics, Faculty of Nuclear Eng. TU Prague
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finite volume form is utscd w~ithiartificial disipative termis that arc in (.', y) coordina-te system
(difference ipplroximations of the terms

At aZ At ( l/ Otx) 4El (I0I'VI.) + 0'i - 1 (1W 1 1170 i/ ~ ~ 4A x AY Dy

Boundary conditions along a profile surface are considered using following formutla (a case
of lower boundary)

pressure 1)1,j-11/2 is extrapolated by double quadratic extrapolation and relation (5) is then
u.4e(I for deriving other special differencc formula for boundary comp~utational cell in predic-
tor step ais well as in corrector step. Periodical conditions are considered by usual way. For
steady state computation of channel flows we use 1D theory to fuilfil upstreamn and dlowni-
streamn boundary conditions, for 2D cascade flows aill comp~onlents of vector TV ire consideredl
along upstreamn boundary; along (lownstremnf boundary first three components of IV are ex-
tralpolatedl and energy f. is computed using given downstream lpressurc P2 anid extrapolated
values p, [pit, p?,. Governing systemn of Euler equations is considered in dlimen'sioless form.

Prcsented 2D ntunerical resuilts of trmisonic channel flows are conimrd with nuinerical1
reSul1ts of Ron -llo-Ni, Af.. = 0.675. litterferometric mencaaeients of Institute of Thermto-
mechanics of Cwecloslovaik Acaidemy of Sciences 151 of 2D t ransonic flowvs throtigh 8%/, DCA
cascadle for uipstretimi Maicl lnumblers Mf < 1 a~s well as A1,, > I ire comipared to ouir
numerical resu~lts Ilsinlg flincs M1=coSt (SO(, fig. 1,2).

I f ~

* Fig 1.Fig 2.
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II. Numerical solution of 3D transonic flows in a channel

Consider 3D systein of Euler equations in conservation formx

TV, + F(TV);1 + G(W),, + 1(W.1) = 0, (6)

TV = col Ilp, pit,pv, piw, eli, (u,vt,wi) is velocity v'ector. In this case finite difference incthiod
is used for numerical solution. Cross-section of conidiered 31) channel is oblong and we usc

* transformation of equation (6) to (xi.s, z) coordinate system; s is approxiiuatelly streamline
direction. Then (G) is tranxsformecd to

1 + F(TV), + G() 4 + H(1V). = 0, (7)

and for numerical solution Mac Cormack explicit predictor-corrector conservative difference
scheme is used. Grid points are not considered on the wvalls. Boundary conditions on the
walls are fulfilled by the similar way as in 2D case of finite volume fommin using extrapolatedl
pressure p. Downstream and up~streamn bouindary conditions arc fulfilled also b)y the way
simuilar to 2D numerical solution.

Presented 3D nmnerical results of transonic flows in a channiel are comuparedl to numner-
ical results computed by ID theory and 2D theory.
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THE INITIAL-BOUNDARY VALUE PROBLEM FOR TIlE
TRANSONIC EQUATION IN TiHE UNBOUNDED DOMAIN

Lar'kin N.A.
The Institute of Theoretical and Applied Mechanics

630090 Novosibirsk
USSIt

While studying tihe transonic flow, model equations governing the development of pertur-
bations near a known solution widely are used. These equations are derived under various
a sstimptions from Navier-Stokes equations for a compressible heatconducting gas. The ,in-
lReissner-Tsieghn equation

Uzt + utzt . - AVu = 0 , (1)

where A, = O2 /9y2 + O/Oy2 simulates the development of perturl)ations in nonsteady non-
viscous transonic flows near a slender body, [I]. It is easy to verify that (1) is hyperbolic for
all finite values of u. Equation (1) is considered in the rnihotinded domain G = (0,7') x .1),
1) = Q x 1k't , y E Q C 1112 , t E (0,j), I' is a finite number. The boundary 00 of 0 is smooth
enough. On 09 Neuman's condition is given

Ou = (T,,y) (2)

Here N is an outward normal on 09. The function v is equal lo zero for 1.7]: _ ?, R is a. finite
mimber. The decay of pert|urbations at IxI - 0o is given:

lim u, = 0 OU ,I)
1.0-oo Dy (:3)

lrl-oo

At t = 0 the initial data. are given

1(z,y,0) = 10(X,y) (4)

Theorem 1.

If 2 
2(Pf E 1), 'to E 11 6(D), i c, o( ,y)d E Ws(D

C0

therI such 7o E (0, 7') can be found that there exists a unique (accurate to the constant) solution
of(l)-(4) in Go = (0,To) x D:

0?u E lo(,7';IF -(D)) (j = 0,,2)0 Av y t L,, (0, 7 o; 2 "- () (i =0,)

Theorem I is proved by approximation of (1) (4) by a seq nence of problems:

VIg - iVxxz + Vxt)v. - A 1 = 0 (5)

lim v. = 0, lim - 0, v(.r,y,0) = t,0,,(.,y) (6)
Il-'IO lrlo y Oy
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Here ',,to are smooth app~roximnations ror Vp and vo respectively, it is a positive pwra1metvr.
Equation (5) is a physical one, it describes noiisteady pert.u rba ions inl viscou1s leatcontdltcting
traiisoaic flowvs [2]. Unlike (1) equation (5) is not hyperbolic but. a nojiclassic-al onte.

Theor-em 2.

If P,, E 1111 2Oxfl) V0 gEI(D), ON =3X1 2 aLEy~~EW(

then for ally it > 0 Such A, To E (0, T) call be found~, that there exists a unique solutioni of (5),(G)
(accurate to the constant):

L.,) L(0,T7b; I V2 '(D)) (j =0,1t,2); JLOvt. E L .(0, 7 b; I V' '(D)),

OtAAyv E Loo(OTo; ' 2 -'(D)) (i = 0, 1),

which tends to the solutioni of (I )- (.1) as y tends to zero. Thieoremi 2 is provedI by approximation
of (5),(6) by a sequlence of stea(Iy problemis ulsing a disc ret1 i'/atiolm il iine. 'I'Ien S1 'emdy prolvlis
are app~roximrated by problemis in bounded domains, which are ,;olvedI by Galerkin's method,
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ON TIIE "MULTI-ZONA I,-IA I?(CI I IN " NI ITIIOD
FOIR TI IN-LAYER VISCOUS-I) EFECT I YIEIOI II LEMS

IN AEROI)YNAMICS

M. LAZAREFF and .JC. LE IALLEUR

ONERA - BP 72 - 92322 Chatillon Cedex (France)

I. The 'Thin-Layer Viscous-Defect' (TLVD) hyperbolic problem

The Defect Formulation 13,4,51 of the Navier-Stokes equations allows the viscous terms to he
isolated in a "Viscous )efect" problem. In the Thii Layer approximation, this leads to a '11,VI)'
honmidary-layer like prolulem. III two diielln.sionis, this I)efet. t hin-lay.r )roblem is of paralolic type
a:ld is atticnahle to a splace-marchin g meithod of solitti m (we voisi. er the ;tra dy cie). In I r,'c
ditilentsiotis, the saime 'l,VI) problem )ecomes of hyperbolic type in space mid is to be solved in
general curvilinear coordinates (Ct, ) ott a cuirve, surface. Moreover, the corresponding discrete
grid is specilied a priori an1d cartnot. be adjiisld nor interpolated, from nuimericd precision
considerations.

2. The idea, for the Midli-Zonal MIrhiniig (ZNI1) mjtethod

In numerical stealy aerodynamics, hype rholic systehls of e(titations generally appear in the
computation of compressihle flows (Euler e(paliotis is anl example ). The correspotnding characleristic
directioins usually lie in the do1mint direction of the general flov., meanig that. their igul r
excursion is not great and mllowing [or a simple space-itarching mctho1d of solution.

Fron tle tmathematical point of view, the peculiarity of th hypetlolic system represethtitg the
'VI) problem (or Puty kind of boundary-layer like formilafion) is th:A the anglilar (xctirsion of the
characteristic directions may be very large. As this prevent.s the tis, of a simple space-marching
telhod (except in the most. trivial cvses). and as tlie nimerici difficulties associated with the
'xact' characteristic ietiod seem forbidding to u. we have resorted to developing a specific

method of space-marching solution.

The Miuti-Zonal (Multi-) Marching metlhod (MZ ) 11,21 is tieant to save the ,udvantges of the
space-marching method while allowing for the solution to proceed in the general case.

(i) - multi-marchinlg me.thod
Ile first., natural, idea is to use all four possible marclihig directions of the grid, nmiely I ,_
+ , - , locally selecting whichever one is most appropriate.
The second, more powerful one, is to alternate geilerl sweeps of th,, solution dotmain along these

four marching directions, updating the solution only on newly accessil-le niodes. his conslitutes the
multi-marching method, which is in principle sufficient to cover by iteration the (omain of inlieee
of the initial conditions (i.e. stagnation-point).

(ii) - multi-zonal method :
The idea is to use available information on the expected general flow topology (of the kind that. is

useful for grid generation) for the definition of a system of "zone-;" which are to be solved in
successive order, with expected increase of numerical efficiency.

(iii) - multi-zonal multi-marchinLmethod :
The combination of the previous ideas leads to the present "MZM" method, which combines

repeated sweeps along the four f directions, for each successive element of a system of zones
covering the solution domain, with possible overlap whenever deemed efficient. This system is
automatically predefined (expert-system like) according to the expected general flow topology of the
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given type or configuration.

This in principle provides a general method of solution on the whole do:.aain of intlliece of the
Cauchy data (stagnation point), given that the grid is not too highly distorted and the characteristic
cone angle does not come near nor exceeds that of the local grid lines. Thl'us it cannot be proven
that the method will work on an arbitrary grid, or if the magnitude of the characteristic cone angle
exceeds 90 *.

But it is reasonable to expect few diffculties, except perhaps on certain configurations near points
of closed separation. In this neighbourhood, the TLVD problem may lead to cone angles nearing
90 *, depending on its (direct or inverse) formulation.

3. The numerical method of solution

The hyperbolic system of equations of the TLVI) problem in integral formulation consists, in
tensor form 121, of one 'yector equation for tlhe Defect momentum balance

(t )divpq 2 + pq(xO 0.o pq
2one scalar equation for the entrainment (collocation equation for momentum):

(2)di,4pj6-pq6A =if-- +pqE
and one scalar equation for the Defect mass balance
(3)divlpqk_ =pw-i -
where :

p,x pseudo-inviscid density and velocity fields
-,j, real (viscous) " ..

q I-' It pseudo-inviscid velocity modulus at the surface

6_=pq f (px-jkd

t _(p q2) 1 f (pxox- 70k)dn - q-j xo6_
0

n field coordinate locally normal to the (t, 2) surface
w -- normal component of pseudo-inviscid velocity at the surface
IV 1 u0  2 real (viscous)
.U4=(r 0 /pq2 ) .(4/llr"ID
r, wall shear stress in the real (viscous flow)
A boundary - layer thickness scale parameterEqlations ( 1)-(3) are written on the (t 2) surface for vectors and tersois defined in Iwo-

dimensional space. These can he written in projection on the local holonomic (,l ,2) vector ,a sis
computed from the (fI , t2) curvilinear coordinate set.

Taking into account a physical modelling based on the t.hree-dimensional velocity profiles or Le
Blalleur [5,6], this yields a closed system of rank-4 hyperlx)lic tyVe. It can be write., for solhtion, by
a marching procedure in the z direction (where z = + ,- , ,

a -i 2 l 4

(i) - local integration schemeL - marching):
The resulting set of four scalar equations is discretized on the discrete grid i(j), M '(j) using the

explicit MacCormack scheme, and solved by space-marching in the t direction which isinstantaneously chosen as z, subject to two stability criteria. One is the linear CFL criterion
mandatory with explicit integration. The other is a non-linear criterion based on the boundary-layer
displacement thickness.

i' ) - $1o~ba in .teration method_+ J+).2 - archinnn).
The progressive development of the local integrations generates the characteristic directions and

automatically guides the increasing coverage of the solution domain with successive sweeps on each
predefined zone, until no further grid node can be accessed.

185



L

4. Numerical results

The method allows the computation to proceed in presence of rather complex viscous-flow
topologies, such as those which develop on slender bodies at both incidence and yaw conditions.
While a unique integration direction might suffice for a prolate ellipsoid at 10" of incidence, the
same one at 30', or the flattened type with both incidence and yaw, will exhibit a complex flow
topology in the nose region, and also around the predicted separation line (open and/or closed
separation). This will require to sweep away from the stagnation piint at the nose and towards the
accumulation line at the rear.

An example is given for a 6:1:1 ellipsoid at 15 of incidence (fig. 1), showing the accumulation
line, and the stagnation point region on a slender body at incidence 30 and yaw 10" (fig. 2),
showing the four integration directions which radially diverge from the stagnation-point cell.

5. Conclusion

The technique of iterative sweeps along the four grid directions (multi-marching method) solves
te difficulties associated with space-marching methods for hyperbolic problems when the

characteristic directions are widely varying in the computational domain, as it is usual for TLVD
equations.

The corresponding numerical efficiency is augmented by decomposition of the computational
domain into a system of possibly overlapping zones, which are expected to be solved in successive
order (multi-zonal method).

The resulting "MZM" method provides an efficient means of space-marching computation for
hyperbolic problems with highly contorted characteristic line patterns.
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Fig. 1: 6: 1: 1 prolate ellipsoid a=15
Skin-friction directions showing the accumjulation line at the rear
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1 Joniodulion.

For nonlinear hyperbolic systems under nonconservative form, we consider weak
solutions in the class of bounded functions of bounded variation In the sense of Volpert A
generalized global entropy Inequality is proposed and studied. In this framework, we solve the
Riemann problem and prove, for the Cauchy problem, the consistency of a corresponding
random choice method. Our theory is applied to nonconservative systems issued from Elasticity
and I-ydrodynam Ics.

2. A definition of entpy weak solutions for nonconservative systems:

Let us consider nonlinear hvoerbolIc systems uner nononservative form

(1) Ao(U)€lu + A(u) au =0, u(x,t)E U, xEc , t>0.

Here, U is an open subset of 1RP, A. and A are continuously differentiable functions defined

from U to the space of pxp matrix. For each u In U, we assume that Ao(u) Is Invertible, and
for the sake of simplicity the matrix Ao(u) 1 .A(u) has it distinct elgenvalues. Each
t-charecteristlc field Is supposed to be globally either genidnely nonlinear or linearly
degenerate.

Generally, the nonlinear hyperbolic system ( i) is not an usual system of conservation laws,
because the matrix A0 and A may be not Jacobian matrix. The thtiry of conservation laws kMes
not apply: the notions of weak solutions and entropy condititns have no sense for (1).
Nevertheless such nonconservative systems appear In some applications of Elasticity or
Hydrodynamics as recently shown by Colombeau and Leroux [61. Thus a mathematical theory of
weak solutions for ( ) is needed. Here we define a notion of entropy weak solution for ( I ) in
the space of bounded functions of (locally) bounded variation. Let us recall that the relevance of
the space BY for studying systems of conservation laws is recognized by many authors as Glimm
[ 31, DiPerna [I 1, Diperna-Majda [ 21 ,... Our results will establish that the BY spacq yields also
a suitable framework even for systems under nonconservative form.

a First to define in which weak sense must the equations be understood, we follow Volpert [ 7)
and seek wek solutions to ( 1 ) In the space LoflBY(5RxP*) of bounded functions u of (locally)
bounded ywrfation. Let us recall some regularity properties of BY functions. For an element u
In L'OBY( IPxP*; P), it turns out that -with the possible exception of a set with zero

I -dimensional HasdDrff measure -each point IRx Is r.Ir, that Is either a oInt o
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soproximate continuity (u=u_=u+) or a point of aporoximate lure. (where u admits two limit

values u- and u+). Henceforth, we will consider representats of BV-functions modulo

I -dimensional Hausdorff measure. And following [7), we define the superposition of a fonction

as follows. Consider a continous function f In C°(IRP;IR) and an element u in

LrBV(PxJ;RP). The fonctional suoergosition of u by f, denoted by f(u), is the function of

L'nBY( xi*;lRp ) given by the formula

(2) f(u)(y) = 0c f( uy) + a(u+(y) - uy))) d,

valid for each y In Rxfl' without a set of zero 1 -dimensional measure. If A is a matrix valued

function, A( u) Is defined similarly. Volpert [ 71 proves that the fnnctlon F(u) given by (2) is
measurable and locally integrable with respect to the Borel measure defined by a partial
derivative av/at (or dy/ax) of an arbitrary bounded BY-function v. thus the product

f(u).av/t makes sense as a locally finite Borel measure. Indeed. for systems of conservatlon

laws, this concept of superposition Is very useful as noted by m ny authors (DiPerna-Mlaida
[21...). Now using this notion of functional superposition, we propise to set [ 5)

DEFINITION k: A function u In LOr'BV(PxP.;U) Is a weak soLutlt to the
nonconservative nonlinear hyperbolic system ( I ) If the equality

(3) AO(u) atu + AM 6.u = 0

holds in the sense of the Borel measures.

Let us apply this definition to special discontinous functions aid Qet a prja!rical formula for
conputing jump relations for ( I).

TItEOREM I: lhe discontinous function u given by: u(x,t) = uL for x-ottO, u

for x-0 t>O, with uL and u, in U, a In IR, is a weak solution to the system ( I ) if

and only if the following generalized Rankine-Hugonot_ reinlon holds

(4) o-aAO(UL+O(UR-UL)) + A(UL.a(UR-UL)) ) dot (UR "U) =0.

Second, for the sake of uniqueness, we define a generalized notion of (global) entropy
inegual itv [ 5]:

DEFINITION 2: A p-vector valued function * U - R P of C'-class Is an
admissible function for the nonconservative system ( I ) if it is insrasjng and
satisfies the commatibilitv prooerty

(5) DTA=A0 TD, DTA=ATD.

And we propose the following definition of entropy weak solutions (51:
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DEFINITION 3: Suppose there exists an admissible function # for ( I). Then a
weak solution to ( I ) ( In the sense of Definition I) Is an entropy weak solution
to (I) (with respect to the admissible function ) if the ooneralized entropy.
Ieulltv

(6) (#T%)^(u) atu + ( TA )^(u) a,u 1o

holds In the space of measures.

The (nonconservatIve, in general) Inequality (6) Is a generalization of the usual entropy
inequality [41 derived for conservation laws by the viscosity method. When A0 and A are
Jacoblan matrix, ( I) Is a system of conservation laws and we prove (51 that our notion of
entropy weak solution reduces exactlv to the usual notion of Glimm (3] and Volpert [71.
Examples of admissible functions for nonconservative systems are presented In [5].

3. Riemann _roblem and random choice metho. ,

We are concerned with the existence of entropy weak solutions of the Cauchy problem for
the nonconservatlve system ( I ). We begin by considering the Rieleann problem for ( I ), which
is a Cauchy problem with a piecewise constant Initial data uo of th, form:
(7) UO(x)=UL if X(O, up if x>O, with utand u, InU.

For (1), the usual notion of rarefaction waves Is still valid And, we note that the Lx
admissibility criterion (41 makes also sense for ( 1). Using our )ump formula (4), we are able
to define a generalized notion of shock waves and contact discontinuities for a nonconservative
system. Then, we get [51:

ltlfEREM2- For Ium-uLt small enough, there exists one self similar solution of
the Riemann problem (1)(7). which Is composed of (at most) p rarefaction
waves. gneralizd shock waves or contact discontinuities.

And a main result concern the equivalence between the two entropy conditions.

THEOREM 3: For weak shock waves, our generalized entropy Inequality (6) is
equivalent to the Lax admissibility criterion for the nonconservative systemC(I).

Then,given a random sequence a, approximate solutions ( u ) of the Cauchy problem for
( ) are constructed by glueing together solutions of aifferent FRiemann problems as In the
random-choice method of Glimm (3]. It is a simple matter to prove that this family is uniformly
bounld In norms L" and BY, and thus It (or a subsequence) converges almost everywhere
with respect to the Lebesgue measure to a bounded BY-function u u(x,t). Finally, we get [5]:

LiEaRft_ A- The family of approximate solutions ( uh I s consistnt with the
nonconservative system ( I ) in the following sense. There exists a subsequence
(h)nf tending to zero, such that

(8) JJ e( O(u)alu +(uh)auh dx -. 0, h=h. -0,
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for every function 0 In C(IxNP +, IR) with compact support and almost every

sequence a. Moreover when (I) admits an admissible (unction * and all the
characteristic fields are genuinely nonlinear, the family of approximate
solutions { uh) is also consistant with the oeneralized entropynirn.altv (6):

(9) lir J J 9 ( ( * o)Au') atuh - (,TA)(u) auh ) (x di i OX h::l -. 0)

4. Nonconrwvative systems issued from Hyftynamcs andE fi l.

As an application of our theory, we study in particular a system of 3 equations introdued by
[61 and issued from Elasticity, In Euler coordinates, the density p, the velocity u, the stress
deviator oof an one dimensional homogenous elastic medium satisfy

(10) atp + ax(Pu) = 0, at(pu) + ax(pu -0) = 0, ato + Uaxa - k u ax

where k Is a positive constant. As noted in (6], the thirdequation In ( l0)ls nonconservative and
corresponds to the Hocke's law. For this model, we solve the Riemann problem wiAJout
restriction on the size of the Initial data, and we find the generalized entropy inequalities (6)

We have also considered the system of conservation laws of (;az Dynamics. Following some
previous ideas of [6], we derive an equivalent nonconservative for m of this system (5]:

THEOREM 5: For the sake of simplicity, assume an equation of state of a
polytropic perfect gas. The usual system of gas dynamics In Lagranglan
coordinates is equivalent to the following nonconservative system with the
unknown (v,u,p) :

(!I I) atV - xu = 0 ,  atU + axP =0, V atp + T p axu=O0,

where the unknown ore the volume v. the velocity u anit the pressure p; l I.
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A velocity pressure model

for elastodynamics

by A.Y. Le Roux

Math~mattques, Universitt de Bordeaux 1
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The dynamical problems in elasticity and elastoplasticity
used to be modelized by the classical conservalion laws, Involving
the density, the momentum and the total energy. These laws need to

be completed by adding a state law, which expr.sses the pressure as
a function of the density and the internal energy, and some

equations ruling the the non isotropic part of stress tensor. These

equations and the state law are deduced from experimental measures.

The use of such a state law may be very unstable in some
computations, for some materials such as copper or iron. As a

rmatter of fact, for such materials, a tiny variation of the density

leads to a big variation of the pressure. Thus one can see, in a
numerical computation, some oscillations or" the pressure near a

contact discontinuity, though the pressure must be theoretically a

constant.

The equations ruling the non isotropic part of the stress
are usually deduced from a looke law which has not a conservative
form in Eulerian coordinates. Moreover, by making the Lame
coefficient depending- on the state of the material (density,

stress, pressure or internal energy), one puts some non

conservative terms into the model.
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We can get rid of the numerical drawbar'k on the pressure by
introducing a new equation for the pressure in place of the
conservation law of the total energy and the state law. This is a
rigorous computation in the absence of shocks, which leads to an
equation of the same (non conservative) type as for the stress.
Then the whole difficulty of the problem has not increased since,
in any case, non conservative terms are already occuring for the
stress. This difficulty lies into the handling of the products of
distributions. By performing them in a right wxay, one can find the
same shocks as given by the experimental data.

Our aim here is to show how one can solve such a difficulty
for a very simple problem involving only thf. velocity and the
pressure, in the one dimension case. These Iwo parameters are of
high interest in practice, for the shocks polass which are d e d uced
from the experimental data, are drawn in fact. on a diagram
involving tie velocity and the pressure (see [AI).

The first section recalls the experimentlal technique which
leads to the construction of this shock polar. This curve
corresponds exactly to the shock curve, that is the Iltugoniot curve,
of the model to be written. This curve is in ,practice very close to
the Riemann invariant or the isentropic curve, and the difference
used to be neglected by experimenters.

The model is built in the second section. One needs three
basic physical hypotheses to build it. The first one expresses that
the velocity and the pressure are varying "in phase" on a given
shock wave. The second one deals with the sound celerity in the

material, which is assumed to be independant of the material
velocity. The last one corresponds to neglect the variations of the
specific volume with respect to the variations of the pressure;
this is only done in order to get a simplified model. The phase
hypothesis means that, on a shock wave, the velocity and the
pressure can be shaped with jump functions corresponding to the
same equivalenve class of an algebra wider titan the classical
distribution space (see (11), but where the multiplication is
suitable as for the CO functions. It was shownt in (2] and [3] that
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for perfect gas, the phase hypothesis is really fulfilled by the
velocity and the pressure together, since in this way one gets the
right solutions with shocks. This property is not true for another
couple of parameters, such as the momentum and the velocity for
example, which can lead to shocks with a wrong velocity or a wrong
intensity. From the phase hypothesis, one can obtain a shock
condition to be identified with the experimental shock polar. In
this way we get the expression of the sound celerity with respect
to the pressure, as expected from the second hypothesis. Thus we
are now certain to have the discontinuities of the solutions of
this model corresponding exactly with the shocks which have been
observed experimentally.

Now the model has been written and wo want to solve it by
making numerical computations. This will be performed by mean of a
numerical scheme of the "transport projection" type as the Godunov
scheme for example. The third section is concerned with the
transport part of the scheme, which is ii fact reduced to he
construction of a Riemann solver. This solver uses the phase
hypothesis that we have done by writing the model and then we can
be sure that the shocks will be the right ones. From a technical
point of view, this corresponds to solve a system of two nonlinear
algebraic equations. This is performed through a very fast iterated
process which uses the dynamical impedance (which is defined as the
product of the density by the sound celerity) as the linearization
parameter.

This Riemann solver allows to build an approximate solution
for a short time interval, from constant piecewise data. We have
now to project this solution on a space of constant piecewise
functions in order to be able to start again for the next time
step. The fourth section deals with a discussion on several kinds
of possible projections which can lead to different numerical
results, more particular for gas or light materials. Some numerical
results are reported in this section.
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We give also a few comments and generalizations, such as
the introduction of a variable density in the computation. We
notice in this case a good behaviour of the pressure and of the
velocity near a contact discontinuity, and by applying this scheme
to gas dynamics, we get results similar to those given by the
Godunov scheme with the classical conservation laws. Thus the
scheme described in section 3 and 4 is not of high interest for gas
dynamics since its performances are not better than many other
methods, though it always gives the entropy solution. We find its
full interest by applying to stronger materials and in its
capability to be generalized to more complex systems in
elastodynamics or in dynamical elastoplasticity, even for several
space dimensions.
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Linearized Wave Interactions for Nonlinear Conservation Laws

Randall J. LeVeque
University of Washington

The basic idea discussed in this talk is the use of linear supt., position to generate approximate
solutions of nonlinear hyperbolic systems of conservation laws.

The application that motivates this work is the extension of Godunov-type numerical methods
to situations in which the Courant number is greater than one. 'l'his means that waves from neigh-
boring Riemann problems may interact, and it is this interaction that is approximated by linear
superposition. This can be useful in efficiently dealing with nonuniform grids where some grid cells
are orders of magnitude smaller than others due to irregular boundaries, shock tracking, imesh re-
finement, etc. For mildly nonlinear problems it can also be advantageous to use uniformly large
Courant numbers.

Let Ui represent an approximate. solution in the jth cell (z1 , zj+1) and let ui(.T, 1) be tlie solution
to the Riemann problem with a single discontinuity at zi, i.e.,

{i (ZU0 -1 X < Xi
o  U i zxj.

For a strictly hyperbolic system u, + f(u), = 0 of m equations, uj is a similarity solution that

typically consists of in waves. Denote the wave strengths by vectors R(j ) , p = 1,2..... m, i.e.,

(1 i - _, = ?j
p=1

Then we can define an approximate solution ii(z, t) for all t > 0 with the piecewise constant initial
data

ii(z,O) = Uj for zx <z < xj+

by setting

(2) t(fe) = &(X,0) + ,(u,(r, t) - 11j(. 0)).
j

For i sufficiently small that no wave interaction occurs, this is in fa.t the true solution. For a constant
coefficient linear system ti + Au, = 0 it is the true solution for all 1. For noulinear problems it is an
approximation in which the waves interact by passing through on another with no change in speed
or strength.

A large time step generalization of Godunov's method is obtained by averaging fi(z, i) to obtain
a new piecewise constant function at the end of a time step of arbitrary length. This method has
been studied in [21 and [4]. It is also possible to obtain second order accurate methods in a similar
vein by using piecewise linear approximations[3].

To show second order accuracy of such a method it is necessary to demonstrate that this lin-
earization is compatible with second order accuracy in time. Thllis can be done by considering the
continuous analogue of this linearization. If u(z,0) is a smooth function then as the mesh width
goes to zero the decomposition (1) approaches a (scaled) decomposition of u.(E,0) at each point (
into eigenvectors rp( ) of the Jacobian matrix J(t) = f'(u(, 0)). These vectors satisfy

m

U(V, 0) = Zrp().
p=1
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Corresponding to the Riemann solutions uj(z, t) used above we define z(r, l;() for eacl, as thw
solution of the constant coefficient linear equation

zt + J(e)z. = 0

with data

z(z, 0; H) = (z - ,(, 0)

where H is the Heaviside function. These solutions are then combined by liI('ar superposition to
give the continuous analogue of the approximate solution (2):

f(x,t) = u(z,0) + L [z(x,t; ) - z(x,0;]d .

This approximation was originally introduced by Brenieril] to give a unified vie w of sevral finit"
difference methods, including Boltzman and particle methods. It is also similar to nontlinear ge,-
metrical optics approximations.

If we hope to achieve second order accuracy from a numerical inethod based on this approachi,
we need

ii(z, t) = U(Z, t) + 0(0)

as i -- 0. This has been shown to hold for sufficiently smooth initial data[5].
At the other end of the spectrum one can investigate the effect of linearizitig highly notiline,r

interactions, for example of strong shocks. Some results in this diiction indicate a surprising dlgre
of long-time structural stability of solutions under this type of approximation.

The talk will contain both numerical and theoretical results related to the above questions.
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A MULTIGRID TECHNIQUE FOR THE LAMBDA FORMULATION

A. Lippolls and A. Dadone
University of Bari, Italy

Multigrid techniques for accelerating convergence are widely applied to elliptic equations
and their efficiency has been established from a theoretical point of view as well as in practical
applications. These techniques have been extended to the Euler equations by Ni /1/; since
this pioneer work, many multigrid techniques have been proposed, the mi-ot popular being
those developed by Jameson /2/ and Hall /3/, which also use other accelerating devices such
as local and multistage time stepping, residual averaging, enthalpy damping. Tile physical
interpretation of these two methods is different: Hall figures out the multigrid technique as a
faster propagation of errors to the computational boundaries, while Jameson considers the use of
multiple grids an efficient damping of different frequency components, according to the original
"elliptic" interpretation of this technique.

The authors of the present paper are strong supporters of the lambda formulation propo-
sed by Moretti /4/, because of its desirable features. The time dependent compressible Euler
equations are recast in terms of compatibility conditions for characteristic (Riemann) variables
along characteristic lines and discretized by means of upwind differences, which correctly take
into account the direction of wave propagation. In this way a numerical technique is obtained,
which combines the coding simplicity of finite difference methods with the intrinsic accuracy
and physical soundness of the method of characteristics. Since its first appearance as a working
tool for computing unsteady as well as steady flows, many contributions for improving the con-
vergence rate of the lambda formulation have been provided: implicit formulations (see, e.g.,
Ref. 5), fast solvers for one-, two- and three-dimensional flows /6; 7; 8/. lit these last referen-
ces, transonic flow computations have been performed by taking advantage of the shock fitting
procedure suggested by Moretti /9/.

The first application of multigrid techniques to the lambda formulation is due to Favini
and Sabetta /10/, who presented interesting results limited to one-dimensional flows using an
explicit scheme as basic solver.

Aim of the present paper is to present a multigrid technique for the lambda formulation apt
to compute one- and two-dimensional subsonic as well as transonic flows. The main features of
the suggested multigrid technique are the following:

- the fast sovers due to Moretti /6/ and Dadone-Moretti /7/ are used as basic solvers for
the one- and two-dimensional flows, respectively; these solvers incorporate a shock fitting
technique for dealing with transonic flows;

- four and five different grid levels are used;
- the shock position is updated only at the finest imesh level, while its position is frozen for

the computations at the other grid levels;
- the interpolation procedure is applied to the tinme increment of the variables;
- the multigrid cycle starts from the finest grid, moves to the coarsest mesh and returns

gradually to the finest one.
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At first the technique has been applied to quasi one-dimensional convergent, divergent, and
convergent-divergent nozzles; subsonic as well as transonic flow cases have been considered. The
results have shown a substantial gain in the work required to reach a machine-zero convergence;
this gain ranges from one to two orders of magnitude with respect to Moretti's fast solver /6/,
which presents a fast convergence by itself. As a sample, for the subsonic flow in a converging
nozzle computed by means of 128 mesh intervals and five mesh levels, 30 multigrid cycles bring
the logarithm (base 10) of the residual to -13, while 60 cycles are required to compute the
transonic flow in a convergent-divergent nozzle. The suggested technique has been also applied
to the computation of subsonic flows around airfoils and the first results obtained have shown
a work gain of the order of three with respect to Dadone-Moretti's fast solver /7/. Plots of
the results are unavailable at present because of temporary plotting problems, but they will be
inserted in the camera-ready abstract.

Work is in progress with reference to transonic flows around airfoils and the results will
be presented at the conference. Work is also in progress with reference to a simple subsonic
three-dimensional flow case in an elbow duct, using the fast solver technique suggested in /8/
as basic solver, but the authors are not so confident to be able to present the final results at the
conference.
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HIGHER ORDER KINETIC FLUX VECTOR SPLITTING METHOD FOR
EJLER EQUATIONS

J. C. Handal and S. M. |eshpande
Department of Aerospace Engineering

Indian Institute of Science
Bangalore, India

A new upwind scheme called Kinetic Flux Vector Splitting (KFVS)
method has been developed for the solution of Euler equations of
gas dynamics, which relies on the well known fact that the Euler
equations are the moments of Boltzmann equation when the velocity
distribution function F is a Maxwellian. Defining the Maxwellian
F by

F = F(v,I) = (P/I0 v/2F) exp[(-(v-u)
2/2RT)-I/Io]

and a moment function vector W by

= [1 v I+v 2/2]
T

the moment of the Boltzmann equation

<.', aF/at + v aF/ax = 0 >

yields the Euler equations in strong conservation law form

aw/at + aG/ax = 0

Here v is molecular velocity, I is the internal energy variable
corresponding to nontranslational degrees of freedom, p is mass
density, u is fluid velocity, T is temperature, R is the gas
constant per unit mass, I =(3- )/2RT( -I), j is the ratio of
specific heats, and the inner product <,F> is defined by

<,F> dv I IPF
.co 0 T.

W = <*.,F> = (p pu pe]T

G = <vW ,F> = [pu p+pu2  (pe+p)u]T

In case of one-dimensional unsteady flows, the Maxwellian is
split into two parts corresponding to v>O and v<O in order to
apply upwind differencing on the split flux derivatives. The
splitting essentially amounts to writing the Boltzmann equation
in the following form

aF/at + [(v+lvl)/2] 3F/ax + [(v-lvl)/2] aF/ax - 0 (1)

and then to take the moment of the Courant-Isaacson-Rees(CIR)
differenced equation (1). We then obtain the first-order accurate

T is the transpose of a matrix

I m m - m m m m m mmm ~
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KFVS scheme

W n+ 1l  . - (at/ax)[(G+n -G +nj ) + (G -nj+-G-nj)l (2)
where J

G* = <4),[(v±|v!)/2]F >

and superscript n denotes the time level and subscript j denotes
values of variables at the mesh point j.
Now a question may arise whether such splitting which is
equivalent to CIR scheme at .Boltzmann level will remain upwind
after the moments are taken. It is seen that in the flux vector
split Euler equations

aW/ht + BG /ax + BG-/Bx = 0 (3)

the Jacobians WG+/BW, BG-/BW have complex eigenvalues having real
positive and real negative parts respectively. This raises a
further doubt whether KFVS is truly an upwind scheme. But using
the theory given in 1],[2] it can be shown that the kinetic flux
vector split Euler equations (3) can be transformed to the
following symmetric hyperbolic form

P aq/at + B+  q/Bx + B- Bq/ax = 0 (4)

where q iT a transformed vector, P is a positive symmetric
matrix, B and B a e + positiye and negative matrices
respectively. In [2] P B and P- B- have been shown to have
respectively real positive and real negative eigenvalues. Since
eigenvalues are invariant under such transformations, it is
immediately confirmed that the upwinding based on this splitting
is justifiable. It is also observed that the eigenvalues show all
necessary features such as there are no sonic glitches which are
preselt in Steger and Warming flux splitting[3]. The eigenvalues
of P B (see Fig.1) decrease to very smill values as Mach number
M-41 and gradually tend to zero as 1M+ becomes increasingly
supersonic. While t e eigenvalues of P B (see Fig.2) gradually
tends to those of P- B (see Fig.3) as M->I. It is interesting to
note that though this splitting also leads to split fluxes whose
Jacobians (in symmetric hyperbolic form) have positive and
negative eigenvalues, it has been perfomed in a completely
different manner compared to that of Steger and Warmirg[4]. Also
unlike Steger and Warming's flux splitting the present method is
not dependent on the property that nonlinear flux vectors of
Euler equations have to be homogeneous functions of degree one in
the conserved variable for the splitting to be performed.

First-order KFVS scheme given by (2N can also be cast in the
flux difference split form

aw/at + (G J+1 /2 - Gj-1 2 )/ x = 0 (5)

where

J+/2 - (Gj+l + Gj)/2 + (DG-J+/2 - DG+j+/2)/2

= EFS(Expression for First-order Scheme)
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and + <, [(v iv0 )/2](Fj+1 - F ) >

Thus extension of the first-order KFVS scheme to higher-order

schemes can be done according to the analysis of Chakravarthy and

Osher[5], that is, dfija flux vector G,+l/2 at the interface

J+1/2 as

GJ+1/2 - EFS + [(1+*)(DG + 1/2 - DG J+I/2)

+ (1-+)(DG% J1/2 - DG7J 31 2) ]/
4  (6)

where, -1 and 1/3 are the corresponding values # for second- and

third-order accurate schemes respectively.

As higher-order accurate schemes are known to have wiggles in

their solutions, modified differences can be used in (6) to

suppress them. These modified differences[5] are given by

bG* J+/2 " uinmod[ DG* J+/2. R.DG*J-/2
-&*J+1/2 = mnmod[ De J+1/2' R.DG J3/2 ]

where
minmod[a,b] - 0.5[sign(a)+sign(b)] min( lal Ibl] and

O R (

The final modified expression for G J+1/2 to be used in (4) is

GJ+1/2 = EFS + [(l+#)(D + 112 - 39j+l/2)

+ (I- J Gj1/2 - 1GJ+3/2)]/4

which gives wiggle-free solutions.

Shock-tube problem has been solved using the KFVS schemes.

Results of the higher-order accurate schemes with the use of

modified differences show progressive improvement over first-

order result and have excellent agreement with the exact one (see
Fig.4).
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RIEMAN-N PROBLEMS FOR NON-STRICTLY HYPERBOLIC

CONSERVATION LAWS

Dan Marchesin

IMPA and PUC

Rio de Janeiro

Brazil

Two essential elements in the classical construction of'

Lax (1) of the Riemann solution for systems of strictly hyperbolic

conservation laws are a local "coordinate system" in state space,

and a criterion for the choice of physically meaningful shocks.

The local "coordinate system" allows one to construct the solu-

tion of the Riemanun problem in state space through a succession

of wave curves of a given family "i", each one consisting of

rarefaction and shock curves. The correct choice of shocks based

on entropy consideration is essential to obtain unique solutions;

Lax's entropy inequalities may be obtained by allowing only shocks

which are limits of traveling waves for the conservation law

with small parabolic terms (2).

The above mentioned construction is generic for small data

with the proviso that we consider "strictly nonlinear" systems.

This theory has been generalized in some diroctions by Oleinik (3)

and Tai Ping Liu. (4)

For a number of years, we have been trying to find the

t Riemann solution for a 2X2 system of conservation laws, arising

from a simplified model for the flow of water, oil and gas in

porous media. The importance of such problem has been pointed out

in 1941 by Leverett and Lewis. The solution for the two phase

problem was found in 1942 in the 2 assical work of 11iickley and



Leverett who established the formation of shocks as tle mechanism

responsible for oil recovery in petroleum reservoirs.

The one dimensional system, which represents the conservation

of mass of oil, water and gas with appropriate boundary conditions

and neglecting compressibility and capillary pressure effects is

ut + f(u,v)x = 0

+ g(u,V)x = 0

with f = U/D, g = V/D and D = U+V+D.

Here U = U(u), V = V(v), W = W(w) are the "permeabilities"

of oil, water and gas, respectively, functions of u, v, w,

the saturations of these three fluids.

These are numbers between 0 and 1 which add to 1,

so that we take w = 1-u-v. Laboratory measurements are con-

sistent with taking U = u2/a, V . v2/b, ii = w2/c where

at b, c are the viscosities of the fluids.

The novel feature of this model is that it has an umbilic

point (a/(a+b+c), b/(a+b+c)) interior to the region of physical

space of interest, where the characteristic speeds are equal.

At this point the jacobian of the system (u fv

becomes a multiple of the identity and the characteristic di-

rections are indefinite. As a result, the "local coordinate"

system does not exist anymore. In fact the rarefaction

curves, integrals of tile character-

-. istic vectors ri in the neighbor-

hood of the umbilic look like

la I .the figure.

This fact introduces all sort of new difficulties and

features. One would think that these problems are peculiar to

the model considered. They are not. One can prove that generic

perturbations of (fog) near umbilic points generate compact
?n6
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"elliptic" regions where the characteristic values are complex (5).

In the last work a nice geometrical analysis is presented for

the nature of rarefaction curves.

For models in actual use in oil reservoir engineering,

tile existence of elliptic regions has been established based on

numerical studies (6) and topological considerations (7).

The Hlugoniot curve, which represent the jump relation

arrss shocks

uL) = gf(uv) - f(uLvL)>
s Q -V L ( U , ) -g t L v

has new features due to the existence of umbilics:

While its classical shape in

the (u,v)plane is Z

it may have self intersection or discoxuiectid branches.

The study of these curves falls naturally in the framework

of bifurcation theory. We are currently trying to obtain a global

geometric picture describing the Hugoniot curves.

Putting together rarefaction and shock curves possessing

these non trivial topological features has been a challenging

endeavor in our design of a computer code to solve 2X2 Riemann

problems. There are new kinds of wave curves, not associated

A with any particular family, which we call transition waves.
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To insure that we use meaningful shoks, we have used

those originating from "viscous profiles", ,amely traveling wave

solutions of type Z Z(-a) = ZL, z(+-) = ZR of the

2X2 system modified by the addition of a viscous term, due in

multiphase flow to capillary pressure effects:

Z t + F(z)x = ,(II(Z)Z X) x

in the limit when * tends to zero.

For II = I, this gives rise to the dynamical system

. = F(Z) - F(ZL) - s(Z-ZL).

Ihe existence of a traveling wave solution is equivalent to the

existence of an orbit connecting the singularities ZL, ZR of

the ODE's above. Lax weak shocks are connections between saddles

and attractors or repellers (2). We have eit,-ountered examples

whore Lax strong shocks are nol admissible. To guarantee exist-cnco

of Riemann solutions, "crossing shocks", whJt-h are saddle-saddle

connections are necessary. We believe that oiter kinds of connections

may be relevant. We are investigating spirals occuring within

elliptic regions.

An important point is that considering only shocks which

are viscous profiles does not guarantee uniqueness of tile Riemann

solution.

Thus other "entropy conditions" have to be invokedtpos-

sibly stability criteria for fronts in two space dimensions.

This is one of many issues which remain to be established.
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A MONTE CARLO FINITE DIFFERENCE SCHEME FOR HYPERBOLIC EQUATIONS

Gui 1 lermo Marshall
EPFL, GASOV,
1015 Lausanne, Switzerland.

A probabilistic model related to a differential equation is any
procedure which involves the use of sampling devices based in
probabilities to approximate its solution. A probabilistic model
uses stochastic processes, that is, a sequence of states whose
transition is governed by random events.
Stochastic methods for hyperbolic equations can be subdivided into
Random Choice Methods (RCM) and Monte Carlo Methods (MCM). The RCM
is a numerical technique which in essenc,? consists in sampling
local exact solutions of Riemann problems. The RCM was introdurced
by Chorin, 1976, and is based on a fundaml-'ntal existence proof due
to Glimm, 1965. The main problem with the RCM is the difficulty
associated with constructing the Riemann ;olver. To circunwent it
an approximate Riemann solver was introdured by Harten and
Lax,1981 and by Cohen and Lavita, 1986, these methods however, are
only valid for scalar conservation laws. ihe advantages of RC11 are
that they are grid free, unconditionally stable and give high
resolution near sharp fronts without over shooting. The MCM
is a numerical technique which consists in sampling local exact
solutions of finite difference schemes. In the context of this
work is somehow located between the RCM and plain
deterministic finite difference schemes, in a more general context
is an extension of the MCM applied to parabolic and elliptic
equations. The idea of the method dates back to Polya, 1938
who introduced a random walk method for an hyperbolic equation
studied by Albert Einstein Junior. In this work we generalize
the idea of Polya extending the MCM to hyperbolic equations and
systems. The MCM shares many of the advantages of the RCM.

We introduce the MCM with a simple example. Consider t!,r'
hyperbolic equation
ut + F(u) = 0, (0 < x 5 1, t > (1)
with F(u) U o(x)u, U0 (x) " 0, and with initial and boundary

conditions: u(x,0)=g(Q), 0_<:l, t>-, u(x,t)=f(Q), X=0,1, t>o.
Discretizing the domain with a rectangular grid of size h and Ik
for the space and time coordinates and denoting a generic node by
P., arid by P1 and P2 the corresponding left and right neighbours,

a deterministic explicit finite difference analogue of (I) reads

ri ) i=2 ) n( .
ii0=2

l (Po 0 E a (Po u n

where the coefficients a i (P) depend on the particular scheme

being chosen. For the Lax scheme, for instance, a (P )=0,
0

a (P )=( I+p /2 ), a2(P )=(l-p /2), where po=Uok/h. If the CFL
1 o 0 v '0

cc-11-ticr, is satisfied, stability and thus convergence of thm=

method is assured. Similar expressions can be obtained with the
Godunov or Wendroff implicit schemes.
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We now consider the stochastic modol -for I ) (stochastic ill

deterministic in time). For this we impose the ful I owinQ
restrictions

. a.(P.) =1 and ai.(r.-) _ _ -.
i =01

These restric:tions are necessary for probability assignment. ,o

can now associate the set of states S. of a finite Marf::ov chain
I

with nodes in the domain on which the finite difference is

defined, the internal nodes corresponding to transient states and
boundary nodes to absorbing states. The coefficients ai (P ) of the

difference equation (2) can be associated with transition
probabilities P.. in the Markov chain. Conisider now the following

random walk procedure. Let PO at time t be the current state of

-al hypototical particle and P i=1,2, tie next possible states at

t ,reached in the unit time. The tranIsiti(uin from P at t11+. to fP.n 0 ~11
at t occurs with probability a i (P 0) giveii by (2). This random

n

step process is repeated until a boundary or- absorbing state is
reached and the corresponding random wall: terminates. If u(Io ,0.)

denotes the probability of ending a randcti walk at a boundaty 0.

having started at PO, the expectation of the boundary values

reached is given by

j=s

V U(Po'a f(Q (4)

where s is the total number of boundary nodes. It can be shown

that V(P ) satisfies the finite difference equation (2) with

boundary conditions given by (1). For estimating u(Po,, I) we

simulate N times the random walk starting at PC and counting the

number of times in which a boundary node 11. is reached. An

approximation of (4) reads

+1j=s j=s

V (PoI - E n./N f(0.) = 1/N E n. f(Q (5)
0 j=l j=l

The last summation is the average of all the boundaries reached

after N random walks. It can be shown that the expectation of this

average is u(P ) and that by the law of large numbers this

average converges to the exact solution or the difference equation
(2) for increasing values of N.
The main advantages of the method just de-;cribed are: the solution
at a point can be estimated independently of the solution at other

points, the algorithm is extremely simple, it is easily extendable
to higher dimensions and the dependency of the computing time on
the dimensionality is weak, and it can be solved simultaneously for
several set of boundary conditions with almost no extra computing
time. The main disadvantages are: it is limited to linear problems

for which art associated finite Markov chain can be found (the
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matrix of the resulting algebraic system shoul d be a sttlchasti(-
matrix) and the solution estimate converges slowly to thi enact

~oI u i on -Potausr of -ii',I i -d rmiln , the intkhod( rv-oqi ii tI Ii
computing time whern impleme, ted in serial computers. lmprovc.mnnts
can be made using variance rPIiuci ng techniqtues and a floatiiiq
random walk introduced by Itaji--Sheilkh and Sparrow, 1966. Howevrvr,
the simplicity and intrinsic .- trallel properties of the Motit.e
Carlo method is ideally suited for parallel environment
arquitectures. At prfssent, t.h advent of massivoly parallel
processors greatly stimulated the application of Monte Carlo
miot ods, see for instalce, t:alos, 198,6, (,r So),0m, 195.

I I fonlinear problems the tranisitioni probabilities are unknown
apriori since they are functiont of the un~knoWn sOlution, thus we
are forced to estimate the latter to calculate the former. A
simple example illtistrates the matter. Consider E'urqers invi sC id

equation given by (1) with f(u)=u'/2, u > 0, Rraf with appropriate

initial and boundary conditions. A consistent explicit finite
difference scheme is given by (2 )where now for thme Godunov

scheme, for instance, a. (Pr) )I--Po , aI (P) =F'oI a (P.: . and
Po=0. (L no+U I ) )k/h-0U 0

For the construction of the stochastic mc.del we proceed in the
same way as for the linear case but rathco- than starting at any
position on the grid, the random walk betsins at a node P of a"" 0

time level t n+ for which the solution, t the previous time level

and for all grid nodes, is kic'wn. Here a random walk consists it
one random step since after it a boundary node or absorbing state
is inevitably encountered. The Monte Carlo finite difference

scheme for (1) is given by

u n (P I) if o < !5 a1  (Po0

u (P ) n (Po) if a1 (P) ! : (P )+a 2(P 0(6)
0 a o 2 (-

Un (2) if a (P )+a (P ) < :i5 1
1 0 AL 0i

where a point fall at random in the interval [0,11 with cour-dinair
i picked from a uniform distribution in the raiicle [,1]. Implicit

in this procedure is the fact that thme unkniownt trzirisition
probabilities had been estimated using the solution at the
previous time level; obviously the soluti on is calculated for all
nodes at each time level.
To reduce the variance we have used the following strategy due to
Chorin, 1976. The interval 10,13 is subdivided into m,2

subintervals, t is picked in the first subinterval, t, in the

second, etc., tm2+ 1 in the first subinterval, i.e.,

= + )/mi+I The subinterval ordering is obtained with

- +m )mod m where ml m <m, ate prime integers, v)0 <.m,
Ti+ 1 =( +m )mdNhrm 1  1 2
and 7?0 given. It is clear that since only one . is picked per

random walk, after m 2 random walks, m random coordinates i have

2-. I 2 lI
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been picked and each one on a different subinterval. With this

procedure the sequence of samples . reach approximate

equidistribution over [0,1] at a faster rate. Numerical
experiments show a significant improvent using this technique as
compared with the simple previous one.
The Monte Carlo method for systems of hyperbolic equations can be
applied in various ways using primitive or characteristic forms.
For instance, the shallow water equations in characteristic form
are described by (1) where now f(u)= A u., u=tr's},

A=diag{(3r+s)/4,(r+3s)/4}, r and s are the Riemann invariants,
r=v+2C, s=v-2C, C=sqrt(gh), v and h are the velocity and height of
the water (see details in Marshall and Meitendez, 1982). An
explicit finite differencq scheme is given by (2) where now
ui=(ri,s I and, assuming an upstream scheme and supercritical

flow, a (P )=I-k/2 A(P 0 ), a 1 (Po)=k/2 A(P ) and a2(Po)=O.

For obtaining an stochastic matrix similar restrictions as given
by (3) but for vectors must be satisfied. Thus a Monte Carlo finite

difference scheme for (1) is given by (6) but now taking into
account the non snwlar character of the algorithm, that is,

1 , 2 and 1 and t2 are picked from a uniform distribution

in the range [0,11.

9
Stochastic methods for the numerical solution of hyperbolic
equations have been analyzed and a new method based on exact
solutions of finite difference schemes and sampling techniques
h~s beep introduced. The MCM has been applied to the Burgers
equation, the Buckley-Leverett equation and to the shallow water
equations, using a VAX 780 and a CRAY 1 computer. The preliminary
numerical results demonstratinig the convergence of the method are
encouraging.
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A "NATURAL" FLUX SPLITTING METHOD FOR A CLASS

OF NON LINEAR HYPERBOLIC PROBLEMS

P.-A. HAZET , Ph. DELORME , F. BOURDEL
Centre d'Etudes et de Recherche de Toulouse, Complexe Aerospatial
2 Avenue Edouard Belin - B.P. 4025, 31055 Toulouse Cedex, France

The systems we are dealing with are non linear, hyperbolic,

pluridimensionnal, symmetrizable systems

- m is the number of equations

- n.1 is the time-space dimension

i C (0,1 .... n} and index i = 0 means time.

Such a system can be written as :,

(1) a. f(9) = 0 in the distributional sense
I

where V, the so-called entropic variables, are values of functions from

Rn *1 into Rm . It is well known thatfor any i C fo .... n), there exists

a scalar function. Si . of q, such that

grad S i*(P) = fi ((

and -S* (p) is strictly convex in ip.

Then w = grad S° * (P) are the conservative variables
0

we have : p = grad S°(w)w

where S (w), the Legendre transform of S *(p), is the Lax entropy of sys-

tem (1). associated with the fluxes

S i(wI = w.f i(grad S (w) - S i*(grad SO(w)w w

0 0
and of course : f°(grad S (w)) = w.w

One can notice that such a system is fully determinated by the

n+1-vector :

(S (9). ... S n*((P)

*CERT, 2 av. E. Belin, B.P. 4025. 31055 - TOULOUSE CEDEX

ONERA, B.P. 72. 92322 - CHATILLON CEDEX
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or identically by the scalar function

E (,u) = S I ()u.1

where (ui)i=0 .... n are the components of any unit (time-space) vector u
n+ 1

in R

We say that system (1) is k-diagonalizable if there exists a regular

function k from E X Rn into Rm. and a scalar convex function L* such

that

n+1 * F *

U C Ru) =L (k(n.u).W)(u u.)d du ... du
S E X Rnn

(with the convention u 1)
0

Let we define 6 : E X R n x R n  
- R by

O(r)u,x) = L (kIiu).wIx))

Then we have

fiO) k(',u).(u 8. (,u.x)) dn du ...dun
EX R

n

and system (1) appears as a k-weighted mean of the scalar linear

equation :

(2) u . e = 0

th
The i scalar entropy flux is given by

Yx C Rn + 1 S (w =x)) R u L Me) dn dul... dunEX~ n

L being the polar function of L,

(1(). ui LM()) is of course the vector (entropy, entropy fluxes) for (2).

Some comments can be made

C) For the linear symmetric system

A Ai 4 a 0 with A a p A Pt for i C (0...n)i 0i

a diagonal matrix (A 1)
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We have only m vectors u and

(2) u . 6 = 0 are the equations verified by the Riemann invariants.

*) For Euler equations for I-polytropic gases, we have a k-diagona-

lization with :

E = R and k(r,u) = (1,u 1 ... Un 2 6

2

where 6 . n

2

*) The "hidden" statistichal meaning of such a diagonalization

leads us to hope that we could find it again in many physical systems.

From a numerical point of view, this allows us* to suggest a

discretization of system (1) as a k-weighted mean of a discretization of

equations (2).

For instance, if we choose the discontinuous Galerkin method

to approximate (2). we obtain the following finite element formulation

of system (1)

(3) h V T, f 1 4 E *(qeu)-grad E f (T dgdu)) = 0

e e

where 6

the approximation space Vh is componed (or functions which are

discontinuous across inter-element boundaries,

* Th is a basis function of Vh.

"h E Vh

* u is the outwards unit normal vector to a time-space element Qe,
e d

th ' Ve are the exterior and interior values of th on the boundary
age ofQe

e eh

and

E (Pu) : min (u' ni,0) . L (klq,u).T) dq . du 1-.dun

One can notice that this approximation involves a flux

splitting, given by the decomposition of E*(9,u) E *-(4.u) E *+(,u)

into its convex (E * + and concave (1*-) parts relatively to ;p.
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The local convexity in ip of ' (ip,ul has very significant

interpretations.

For instance, the convexity inequalt,:
* d * e * d d e

E ( ,u). - E (p ,u) - grad [ ( ,uE.( - ) ( 0

can be proved equivalent to the following :

S (w ).u. S (w )u. grad S (w )f - I u < 0
1 w e Ii

e d i i
where w w . f e' fd are the conservative variwaIles and fluxes associa-

e d

ted with e e .d

This latter inequality is very useful ,n the study of both

boundary conditions, and dissipation.

Numerically, we have tested functions Yh constant on every

element Qe (and discontinuous on the element bo,,daries).

It has been proved that if "(h -- q" in some sense (for

instance : in (B.V. loc)m), then (p satisfies both the conservation

equations and the entropy inequality.

In the case of Euler equations, the explicitation of E*(g.u) is

easy ; an explicit scheme obtained through this .%pproximation has given

good results as well in quality as in CPU time.
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.hYPERSONIC BLUNT BODY COMPUTATIONS
INCLUDING REAL GAS EFFECTS

J.-L. Montagn t
ONERA, B.P. 72, 92322 Chatillon C:4.,ex, France

H.C. Yeet
NASA Ames Research Center, Moffett Fielil, CA 94035 USA

G.H. Klopfer*
NEAR Inc., Mountain View, CA 91043 USA

and

M. Vinokur**
Sterling Software, Palo Alto, CA 91030 USA

I. Motivation and Objeclive

The recently developed second-order explicit and implicit tot .11 variation diminishing (TVI)) shock-
capturing methods of the llarten and Yee 11,21, Yee 13,41, ayt, van Leer 15,6i types in conjunctiOn

with a generalized Roe's approximate Riemann solver of \ino:. ur 171 and the generalized flux-vector
splittings of Vinokur and Montagn6 ',1 for two-dimensional hN 1 ersonic real gas flows are studied. A
previous study [91 on one-dimensional unsteady problems indi( ited that these schemes produce good
shock-capturing capability and that the state equation does iot have a iarge c€ect on the general
behavior of these methods for a wide range of flow conditions ft,. equilibrium air. The objective of this
paper is to investigate the applicability and shock resolution 4 these schemes for two-dimensional
steady-state equilibrium real gas flows.

The main contribution of this paper is to identify soMC of t. elements and parameters which can
affect the convergence rate for high Mach numbers or real g. ,es but have negligible effect for low
Mach number cases. In order to investigate these different p,:,,ts, two kinds of flows are considered.
The blunt body calculations at Mach number higher than I', allow significant real gas effects I,)
occur, while the case of an impinging shock provides a test , ii the treatment of slip surfaces and
complex shock structures.

tResearch Scientist, Theoretical Aerodynamics Division, currently on I,,ve as an Ames Associate at NASA Ames
Research Center, Mcqlett Field, CA 94035 USA.
tResearch Scientist, Computational Fluid Dynamics Branch
*Research Scientist
"Principal Analyst
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i The current study on the shock resolution of the various sclmes for two-dimensional steady-state
blunt-body computations indicates similar trends as the oi,' dimensional study. The main issue
appears to be their relative efficiency. Due to extra evaluati-,ns per dimension in the curve fitting
between the le'! and right states in a real gas for the van Lec,, formulation, additional computation
is required for the van Leer type schemes than the Ilarten and Yee, and Yee types of TV)) schemes.
Here van Leer type schemes refer to the use of the MUS( 'L approach in conjunction with Roe
type approximate Riemann solver [101 or flux-vector splittiigs (6,111. Moreover, for siady-state
applications, implicit methods are preferred over explicit met lods because of the faster cmvergence
rate. In addition, it is easier to obtain a noniterative linea iized implicit operator for Ilhe flarten
and Yee type schemes than for the van Leer type schemes. F,,) these reasons, the linearized implicit
versions of lHarten and Yee [12] and Yee 131 are preferred ove, the van Leer type schemes.

In the following section, the generalized Roe's approximate Riemann solver and flux-vector split-
tings for real gases are reviewed. Due to space limitation, only the ADI linearized conservative
implicit version of the Ilarten arid Yee schemes [12,31 is re. iewed here since most of the illustra-
tions are computed with this particular algorithm. The finnidlgs concerning the various aspects in
improving the convergence rate and numerical examples are discussed in the subsequent sections.

I. Description of the Numneric; t Algorithimi

The conservation laws for the two-dimensional Euler equal ions can be written in the form

aU aF(U) aG(U)
S+  a + 0o. (1)

where U [p, m, n, e IT, F {pu, mu 4 p, nu, eu-4pu jT, andG [pv, my, nv+p, ev4+pv IT.
Here p is the density, rn - pu is the x-component of the momentum per unit volume, n = pv is the
y-component of the momentum per unit volume, p is the pre.,sure, e = pif + I(u 2 + v2 )] is the total
internal energy per unit volume, and is the specific internal energy.

A generalized coordinate transformation of the form = (x,y) and 17 -r)(z,y) which maintains
the strong conservation-law form of equation (1) is given by

8U aF(u) aG(u)
aKF a + a 0, (2)

where U U/J, F (C.F + EvG)/J, G = (,.F + %,G)/.i, and J = z7 - (q, the Jacobian
transformation. Let A = aF/aU and B = aG/aU. Then the Jacobians A a F/au and B?
aG/aU can be written as

A, = ( + B)(3a)

B = (tI.A + qyB). (3b)

2.1. Riemann Solvers

Here the usual approach of applying the one-dimensional scalar TVD schemes via the so called
Riemann solvers for each direction in multidimensional nonliuvar svst,,ms of hyperbolic conservation
laws (see for example reference 121) is used. The eigenvalues aid eigenvectors of the Jacobian matrices

A., and B are used in approximate Riemann solvers. Given two states whose difference is AU, Roe
[101 obtained an average i in the -direction, for example, s;itisfying AF = AAU for a perfect gas.
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The generalization by Vinokur 17] for an arbitrary gas involves lie pressure derivatives x = (ap/ap)-
and i = (Op/a1%, where Z = p4. The relation c2 = x + tch ihen gives the speed of sound, where

h = c + p/p. Introducing H = h + (u2 + v')/2, Vinokur found the same expressions for U,iU and
as for the perfect gas, and that k and R must satisfy

TAp + A 7= Ap. (4)

Unique values of k and R are obtained by projecting the aritlhmetic averages of the values for the
two states into this relation (see references [7] and [21 for the ,.',act formulas).

Flux-vector splitting methods divide the flux F into several parts, each of which has a Jacobian
matrix whose eigenvalues are all of one sign. The approach b . Steger and Warming [11] inade use
of the relation F = AU, valid for a perfect gas. Van Leer 16 constructed a different splitting in
which the eigenvalues of the split-flux Jacobians are continumis and one of them vanisheN leading
to sharper capture of transonic shocks. Vinokur and Montagii.', [8] showed that the expressions for
both these splittings can be generalized to an arbitrary gas 1-Y using the variable -y = pc 2 /p, and
adding to the split energy flux a term equal to the product ol the split mass flux and the quantity
f - c 2 /[Y(-y - 1)] (see references [81 and 121 for the exact fornlas).

2.2 Description of the Implicit TVD schemes

Let At be the time step and let the grid spacing be denot ,I by A and Ati such that =JAE
and r)= kAt1 . An implicit second-order in space, first-order iti time TVD algorithm in generalized
coordinates of Yee and Harten for two-dimensional systems (1) [2-4] can be written as

PJn+I At[-n+ _n At - _5
2' F F + - G+ 11 =njk 5

+1 . ___ A 7,k- (5)

The functions F,4 
1 ,k and G,,k+, are the numerical fluxes in the C- and YI-directions evaluated at

(j + 1,k) and (3,k + 1), respectively. Typically, F, I.k can 1,. expressed as

~ 1 -^

+ -, (Fk + F,4 1k + II :ip+,). (6)

Here R, 4 ' is the eigenvector matrix for caF/aU evaluated al some symmetric average of U3,k and
U,+l,k (for example, Roe average 110] for a perfect gas and gtuieralized Roe average of Vinokur [71
for real gases). Similarly, one can define the numerical flux Gk .L in this manner.

Second-order Symmetric TVD Scheme: The elements of the 4, + in the C-direction denoted by

(01+ JSfor a spatially second-order symmetric TVD scheme 13,4j are

I JS=-OI(a,l [atl,+I (7a)

The value at  is the characteristic speed a' for aF/8U ev;,luated at some average between U1,k

and U,+i,&. The function 0 is

O(z)= 22 6Z (7b)
( )zi <b

Here O(z) in equation (7b) is an entropy correction to Izj where b, is a small positive parameter.
*i For steady-state problems containing strong shock waves, a piroper control of the size of 61 is very
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important, especially for hypersonic blunt-body flows. See reference 121 or section III for a discussion.

An example of limiter function used in calculations is:

Q ~=minmod of .Lj+t~oj+2]. 7c

The minmod function of a list of arguments is equal to the smallest number in absolute value if the

list of arguments is of the same sign, or is equal to zero if any arguments are of opposite sign. Here
o,'+, are elements of

-- 1 /=-R (U , + I Uk ,11 3 . (8 )

Second-Order Upwind TVD Scheme: The elements of the ,l,,I in the c-direction denoted by

, )U for a spatially second-order upwind TVD scheme 112,21 are

(+ o I a (g, +g), (a' + ' )o' (9a)

where
S - ,, 0 J

2r 2 - 0 c -0 '(9b)

An example of limiter function q1 used in calculations is

:: tiniliod a_ , (9c)

A Conservatite Liniarized ADI Form for Strady-State: Applicotioris: A conservative ]ineaized AIl

forin of equation (5) used mainly for steady-state applicatiois as described in detail iW references

[3,121, can be written as

At - At~ 1 U At>] Atf 1 G

jy 4 2 E AE 2F'+b 2 kj-A71 i G" It{ At At
' I~4 - 1¢1 ,k- ji= E', (lOb)

11 - E, (10c)
wr Ii k4rc

1 7
w h e r e+( 

1 d
, ,1 I - ,(Od)

fki [B.+, - 1, ]. (l0e)

The nonstandard notation

Hf ,E" = [ A4 l,k-, ,)- $I!+(r)

is used, and f +Ik' nt" , 1 can be taken as
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31k*= R,1kdiagk,(a+i))R-,i,,(E;+Ik - E;,k) (log)

[ 1A,+ E= Rjk+idiagtP(a + )1 R-+ (E,k+
l 

-E,, k). (10h)

Here A,+l,k and B,,k+i are (3) evaluated at (j + 1, k) and (j, I + 1), respectively. The nonconserver-
ative linearized implicit form suitable for steady-state calculat ions 12) is also considered. Numerical
study indicated that the latter form appears to be slightly les.; efficient in terms of convergence rate
than the linearized conservative form.

III. Enhancement of Convergence Rate for Hypersonic Flows

The current study indicated that the following three elements can affect the convergence rate
at hypersonic speeds: (a) the choice of the entropy correction parameter 8b, (b) the choice of the
dependent variables on which the limiters are applied, and (c) the prevention of unphysical solution
during the initial transient stage.

(a). For blunt-body steady-state flows with M > 4, the initial flow conditions at the wall are
obtained using the known wall temperature in conjunction v, ith pressures computed from a modi-
fied Newtonian expression. Also, for implicit methods, a sIo- ' startup procedure from free stream
boundary conditions is necessary. Most importantly, it is ad%isable to use 61 in equation (7b) as a
function of the velocity and sound speed. In particular

01"1=k , + 1'I + c, I ): (h Ia)

(6 141A~ = k(Uk, l -+ A I Ck+1)(1h

with 0.05 < 9 < 0.25 appears to be sufficient for the blunt-l,,dy flows for 4 < Af < 25. Equation
(11) is written in Cartesian coordinates. In the case of genei.,lized coordinates, the u1 and v should
be replaced by the contravariant velocity components, and ,,ne half of the sound speed would be

from the C-direction and the other half would be from the ?I direction. For implicit methods, it is
very important to use (11) in tk(z) on both the implicit and explicit operators. For the implicit
operator, numerical experiments showed that the linearized conservative form (10) converges slightly
faster than the linearized nonconservative form 1121. It seeznq also that when the freestream Mach
number increases, the convergence rate of the linerarized coniservative form (10) is slightly better
than a simplified version which replaces f2c+I and f1" , of (10g,h) by maxi 0(a'+1 ) and

max, V(a5k+,) times the identity matrix.

(b). Higher-order TVD schemes in general involve limiter functions. Iowever, there are optionls
in choosing the types of dependent variables in applying limiters for system cases, in particular
for systems in generalized coordinates. The choice of the delndent variables on which limiters are

applied can affect the convergence process. This point will be addressed more fully in the final paper.

In particular, due to the nonuniqueness of the eigenvectors I? ) i, the choice of the characteristic

variables on which the limiters are applied play an importanit role in the convergence rate as the

Mach number increases. For moderate Mach numbers, the different choice of the eigenvectors have

negligible affect on the convergence rate. However, for large Mach number cases, the magnitudes of

all the variables at the jump of the bow shock are not the 1;ame. In general, the jumps are much

larger for the pressures than for the densities or total energy. Studies indicated that employing the
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fori Ri I I such that the variation of the ak are of the sairie oiler of inagnitulle as for the pressure

would be a good choice for hypersonic flows. Ihe forni siziiilar ., the one used by (Gnofro 1I 31 or Roe
and Pike ] can improve the convergence rate over the oes u. d in references 4,15].

(c). Due to the large gradients and to the fact that the initil conditions are far from the steady-
state physical solution, the path used by the implicit method ran go through states with negative
pressures if a large time step is employed. A convenient way ',, overcome the difficulties is to fix a
minimum allowed value for the density and the pressure. With this safety check, the schente allows
a much larger time step and converges several times faster.

IV. Numerical Results

Resolution of First- and Second-Order schemes: For problems ,ontaining complex shock structures,
first-order upwind TVD schemes are too diffusive unless extremiely fine grids are used. For a blunt-
body flow containing a single steady bow shock only, the shocl-capturing capability of a first-order
upwind TVD schemes seems to be quite adequate if one is interested in the shock resolution only.
lowever, a careful examination of the overall flow field of the density and Mach number contours of
the first- and second-order TVD schemes compared with the exact solution reveals the inaccuracy
of the first-order scheme. Figure 1 compares the resolution or the first-order (setting g' = 0) and
second-order upwind TVD schemes (10) using the Roe appro:,irate Riemann solver [101, with the
"exact solution" for a perfect gas (- = 1.4) at a freestreamn Mich number of 10. The computations
are performed on a 61 x 33 adapted grid for the full (half) cylinder, which yields a fairly good bow
shock resolution by both schemes. However, the contour levels ,tear the body are significantly shifted
with the first-order scheme, while the second-order scheme repi ,duces almost identical results as the
exact solution.

Convergence Ut e of Erplirzt and Implirit TV) Schtm.s ,t HIyprsonic Sped: The five differ-
ert second-order TVD methods previously studied ! in ont lirnensionrl ' icid very similar shock-
resolution for the blunt-body problem. In particuiar, for an inl i .cid blunt-body flow in tile hypersonic
equilibrium real gas range, the explicit second-order !larten a,,l Yee, and Yee-Roe-Davis type TVD
schemes J2-T using the gencralized approximate Riemann sol,, i 7j produce similar shock-resolution
but converge slightly faster than an explicit second-order van l.,er type scheme using the generalized
van Leer hi.:x-vector splitting 18J.

The freestream conditions for the current study are Mo = 15 and 25, p,, = 1.22 x 103 N/m 2 ,
p,, = 1.88 - 2 kg/rn3 , and Too = 226'K. The grid size is 61 x 3:; for the full (half) cylinder (figure 2).
For the A = 25 case, the shock stand off distance is at approximately fourteen points from the wall
on the symmetry axis. The relaxation procedure for the explicit methods employs a second-order
Runge-Kutta time-discretization with a CFL of 0.5. The parameter 6 is set to a constant value
of 0.15. Pressure and Mach number contours converge and stabilize after 3000-4000 steps but the
convergence rate is much slower for the density (with a 2-3 order of magnitude drop in L2-norm
residual). The bow shock is captured in two to three grid points. The curve fits of Srinivasan et al.
[161 are used to generate the thermodynamic properties of the gas.

The same flow condition was tested on the implicit scheme tl0). The convergence rate is many
times faster. Figures (3) and (4) show the Mach number, density, pressure and K contours computed
by the linearized conservative ADI form of the upwind scheme (10) for Mach numbers 15 and 25.
Figure 5 shows the slight advantage of the convergence rate 41f the linearized conservative implicit
TVD scheme (10) over the linearized nonconservative implicit TVD scheme suggested in reference
[12]. The convergence rate and shock resolution for the symmetric TVD scheme (10,7) behave
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similarly. For Mo, = 15 case, the L2-norm residual stagnated alIer a drop of four orders of magnitude.
In general, for a perfect gas with 10 < Mo, < 25 and not highly clustered grid, steady-state solutions
can be reached in 800 steps with 12 orders of magnitude drop ii. the L2 -norm residual. lowever, the
convergence rate is at least twice as slow for the real gas coijter part. An important observation
for the behavior of the convergence rate for the Mach 15 re.'l gas case is that the discontinuities
of the thermodynamic derivatives exist in the curve fits of :,rinivasan et al. [16] might be the
major contributing factor. This is evident from figures (3d) and (4d) and from comparing with the
convergence rate for the perfect gas result.

Computations of impinging shocks: Figure (6) shows the Ma, Ih contours computed by the implicit
upwind TVD scheme (10) of an inviscid shock on shock intei;,ction on a blunt cowl lip in the low
hypersonic range. Extensive study on flow fields of this type were reported in references [17-19]
for the viscous case. This flow field is typical of what will be experienced by the inlet cowl of the
National Aerospace Plane (NASP). The freestream conditions for this flow field are M, = 4.6,
poe = 14.93 N/m 2 , T,, = 1670K, T, = 5560K, and -t = 1.4 for a perfect gas. An oblique shock with
an angle of 20.9' relative to the free stream impinges on the bow shock. Various types of interactions
occur depending on where the impingement point is located on the bow shock. As shown by the
Mach contours, the impinging shock has caused the stagnation point to be moved away from its
undisturbed location at the symmetry line. The surface pressures at the new stagnation point can
be several times larger than those at the undisturbed location of the stagnation point. In addition, a
slip surface emanates from the bow shock and impinging shock intersection point and is intercepted
by a shock wave which starts at the upper kink of the bow shock. The interacting shock waves and
slip surfaces are confined to a very small region and must be ,aptured accurately by the numerical
scheme if the proper surface pressures and heat transfer rat,.i are to be predicted correctly. The
77 x 77 grid used and the convergence rate computed by the ifitplicit scheme (10) are shown in figure
(6). Though the pattern of the flow is significantly more coplicated than for the previous cases,
the convergence rate remains quite satisfactory.

IV. Concluding Reiiai !.s

Some numerical aspects of the TVD schemes that can affe, , the convergence rate for hypersonic
Mach numbers or real gas flows but have negligible effect on io, Mach number or perfect gas flows are
identified. Improvements have been made to the various TVD ;,gorithms to speed up the convergence
rate in the hypersonic flow regime. Even with the iniproveineo though, the corivergence is in general
slightly slower for the real gas than for the perfect, gas. TI,- nonsmoothness in the curve fits of
Srinivasan et al. may be a major contributing factor in slowi g down the convergence rate. Due mo
extra evaluations per dimension in the curve fitting between Ih left and right states in a real gis
for the van Leer formulation, more computation is required f(,r the van Leer type schemes than for
the Harten and Yee, and Yee types of TVD schemes.

Aside from the difference in convergence rate, the nunierical results confirm the findings of the
one dimensional study. The different methods yield very siniil;tr shock-resolution on the blunt body
problem with freestream Mach numbers up to 25, and the state equation does not have a large effect
on the general behavior of these methods. Further improvements on the ADI relaxation algorithm
could speed up the convergence rate even more.
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AIRFOIL CALCULATIONS IN CARTESIAN GRIDS

Gino Moretti

G.M.A.F., Inc., Freeport, NY, USA

and

Andrea Dadone

University of Bari, Italy

Numerical analysis of Euler equations is generally performed
using computational grids which are chosen to be as close to
orthogonal as possible, and to have all rigid boundaries on grid

lines. Orthogonallty of the grid enhances accuracy. Toe handling of
boundary conditions Is simplified if boundaries coincide with grid

lines.
Generation of suitable grids, however, becomes t major problem

when the geometry of the bodies is complicated, wh,!n there are many
bodies in the field, and in three-dimensional proble:is.

In the light of recent improvements, both in coiputing machines
and in numerical techniques, the importance of a choice of a grid can

be challenged and the possibility of using a Car'esian grid all
throughout has already been explored. Succe:sful a' tempts have been
made using a finite volume method as the basic integtation technique
[1]. Here we present and discuss results obtained u ing the A-schee
and shock-fitting. The reason for our attempt is hat t e latter
technique has been proved to be accurate and ef ic ent in all cases
analyzed so far and we want to see whether its good jalitics can be
retained when a Cartesian grid is used to compute ihe flo4 about an

arbitrary body.
In all problems, the boundary condition ou. rigid bodies

determines the entire flow field. Accuracy in enforcing: suci' a
condition is crucial. In using upwind schemes, particularly the >-

scheme, on an orthogonal grid wrapped around a body, the procedure
does not introduce arbitrary elements; accuracy is not impaired. The

crucial problem of our new attempt consists of maintaining spirit anc!
accuracy of the above approach. We focus our attention on al. grid

points in the immediate vicinity of the body (such as points A, B,
and C in Fig. 1). The boundary condition is easily enforced at A and
B. At point A, according to the rules oi the A-scheme, there is only
one quantity which cannot be evaluated from grid values, i.e. the
forward difference approximating one of the x-derivatives.

Similarly, at point B, only the backward difference approximating one
of the y-derivatlves cannot be evaluated. In either case, however,

one boundary condition Is available, i.e. the ditection of the
velocity vector at point D or point E. To use such ;i condition at A
or B, the direction of the velocity vector at A or B is interpolated

from F or G (where it has been computed) and D or E. At C, where
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none of the two above differences Is computable, arbitrariness seems
to be unavoidable, but there are ways to circumvent the difficulty.
In brief, one has to express derivatives in the directions normal and
tangential to the body as functions of derivatives along Cartesian
lines, without violating the domains of dependence. This can be
accomplished in different ways, two of which have been explored in
the present work.

As a side issue, in view of extensions to complicated geometries
and three-dimensional flows, we use a number of rectangular regions,
of increasing sizes, contained inside one another. One of the
regions contains the rigid body. For example, in the airfoil
calculation we use a maximum of four regions, as shown in Fig. 2.
Each region is covered by a Cartesian grid. The fineness of the mesh
varies from region to region, increasing toward the body. In going
from one region to the surrounding one, the mesh intervals can be
doubled, tripled or quadrupled.

In each region, the basic calculation is performed according to
the A-scheme [2] in Cartesian coordinates. The coding is obviously
simpler and faster than with any other coordinate system; it is also
more accurate, due to the absence of Christoffel symbols.
Vectorization of the computation is straightforward. Accuracy is
enhanced by using the COIN (Compressible Over INcompressible)
technique 13,4].

Matching of regions is performed as follows (Fig. 3). Rows
of values used in the A-scheme (Riemann variables) are linearly
interpolated along AB and CD from the outer (coarse) mesh, and used
to generate certain normal derivatives along EF and FG, when needed.
The integration of the inner region is performed including the lines
EF and FG, but not along AB, CD. The values in the outer region
along EF and FG are transferred from the inner region. This
procedure is correct for a first-order accurate calculation. If a
two-level scheme is used (to achieve second-order accuracy), some
additional manipulation is needed, which we will not. outline here.

G

- B

Fig. 1

Fig. 2
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We ran preliminary tests for a circle. The circle is centered in

a square, the side of which is twice the diameter of the circle.

This square, in turn, is contained within another square, the side of

which is 12 times the diameter. The inner square is covered by a

30x30 mesh, the outer square by a 60x60 mesh. Both meshes are

Cartesian, with equal spacing In x and y. The splacing in the outer
mesh is three times the spacing in the inner mesh. The Mach number

at infinity is 0.4. At convergence, the maximum Mach number- is
0.989. This result compares well with results obtained by other

Authors [53. It is important to note that the total number of points

on the circle Is only 44. A plot of isobars is presented in Fig. 4.

Calculations have been made for a NACA 0012 profile, and results

for the case of free stream Mach number equal to .72 at no incidence

are presented. Four grids have been used, testing effects of
different mesh sizes and different overall sizes. The results shown

in Figs. 5 (isobar plot in the innermost region), 6 (Mach number

distribution on the profile), and 7 (C distribution on the profile)

prove that an accuracy comparable with that of the most reliable

codes can be reached. Indeed, the mesh used around the body is still
coarse in the leading edge region, when compared with current C-grids

or O-grids. A fair comparison can be made between the present

results and results obtained using our fast solver code (4] with a

64x16 mesh; they are identical.
We intend to present calculations of tran:nonic flows past

airfoils at the meeting. Such calculations are madt, by combining the

present technique with the shock-fitting subroutine of [4].
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Characteristic Galerkin Methods for Hyperbolic Systems

K.W. Morton and P.N. Childs

(ICFD. Oxford University Computing Laboratory
8-11 Keble Road. Oxford OXI 3QD)

1. Introduction

The idea of combining the use of characteristics with the
Calerkin projection is one that has occurr(ed to many people in

the early 1980s, including Benquel and Ronal [1981, Bercovier et
al. [1982]. Douglas and Russell [1982], Morton and Stokes [1982]
and Pironneau [1982].

A piecewise constant approximation space, with explicit
time-stepping, then gives the familiar fir!.t order upwind scheme
in one dimension, and a genuinely two-dimei~sional scheme which on
a rectangular mesh has an interesting cross-derivative term.
Piecewise linear approximations with the same time-stepping can
give third order accuracy, which is maintained on non-uniform
meshes.

For linear, constant coefficient advection this sequence is
continued with splines of order s giving schemes of order of
accurary 2s - 1: and with centred time-stepping the order
becomes 2s. Moreover, there are several ways of generating the
same scheme, and schemes of intermediate accuracy can also be

generated. Thus suppose Un  is the approximation at time level
n using splines of order s. with the basis {+i :i = 1,2....)-

_n

Suppose further that the spline approximation u using splines

of order s+p is recovered from U1 by meaIns of the projection
equations

n n(1
<n -U n . i > = 0 i = 1,2,.....

Then if the characteristic Galerkin procedure is continued at

each time step by using u rather than U", the resulting
scheme has accuracy of order 2s + p - 1. IFor example, recovery
with quadratic splines from piecewise const:tnt approximations
gives the third order scheme obtained using piecewise linears
with no recovery step. On the other hand re covery with piecewise
linears gives a second order scheme (see Childs and Morton
[1986]).

23?
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The advantage of introducing the recovery step is the degree of
adaptivity that can be introduced. For example, monotonicity may
be preserved or the scheme made TVD. as with various flux-limited
difference schemes (see Morton and Sweby [1987] for a comparison
of the two approaches).

2. Scalar conservation laws

We have developed such adaptive finite element algorithms in one
dimension, using piecewise constants with recovery by piecewise
linears, where the linear section replaces the jump between pairs

of elements but may not entirely remove the constant section in
each element (Morton [1985], Morton and Sweby [1987]. Childs and
Morton [1986]). For problems with shocks, the shock may be
recognised and explicitly taken account of at the recovery stage:
that is, the shock appears in the interior of an element and the

recovered n is continuous, piecewise linear (and piecewise
constant) on either side.

A convenient way to write the algorithm for some purposes is as
foilows:

KU 1 - Un.t,) + Atiaf(an), n) =O. i = 1.2 .... ; (2)

here the special test function in the spatial term is the average
of the basis function *. over the distance moved by the

characteristics dx/dt = a(,n) in one time-step

i f x +a ( n ) At

i@i= ~) A(z)dz. (3)

a nx))At x

This is the easiest starting point for making comparisons with
Petrov-Galerkin and Taylor-Galerkin methods.

However, the algorithms are best programmed by considering in
turn each contribution to the update from a linear section of

nd
u. and allocating some proportion to the appropriate elements
reached by the characteristics. It is clear that an arbitrary
non-uniform mesh may be used and the only Aimit on the time-step
arises from considerations of accuracy.

To put the procedure in a rigorois framework, it has been found
best to use the formalism of Brenier [1984, 1985]. Then
convergence can be proved under suitable conditions even with the
shock recovery stage.
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3. Systems of conservation laws

The Brenier formalism can be extended to systems if
flux-difference splitting is used, which we have found to be more
accurate than flux-vector splitting. To extend our algorithm.

the jump in the recovered solution u over each linear segment

is decomposed by the flux-difference splitting method into jumps
corresponding to each characteristic field of the system.
Corresponding to each of these characteristic jumps, the
appropriate updates are effected by using a form similar to (2).

where * must now be computed for that characteristic field

using an appropriate characteristic speed determined from the
decomposition. This yields an adaptive second order method. We
prefer to use the splitting due to Roe [1981], through which we
obtain results comparable with flux-limited difference methods.

Again, we place no restriction on the mesh and therefore a number
of adaptive grid strategies may be employed. With the use of
Godunov's splitting and for the scheme based on piecewise
constant elements, the large timestep scheme due to LeVeque
[1985] is reproduced.
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ON SOME NUMERICAL SCHEMES FOR TRANSONIC FLOW PROBLEMS

by Marco Moschk Mostrel #

Recently a number of new shock capturing finite difference approximations for solving scalar
conservation law nonlinear partial differential equations in several space dimensions have been
constructed and applied to solve numerically the equations of inviscid compressible flows of
aerodynamics. Those partial differential equations are, in the time-independent (steady) case,
of mixed-type, i.e. their type changes from .elliptic to hyperbolic as the flow regime changes
from subsonic to supersonic and vice-versa.
In this paper, we present some new shock capturing finite difference approximations for solv-
ing scalar conservation laws. Our new schemes have the following properties:

(i) second order accuracy throughout the computational domain;
(ii) global linear stability in all elliptic and all hyperbolic regions;

(iii) sharp steady discrete shock solutions;
(iv) total variation non-increasing property of the approximate solutions;
(v) entropy stability, at least in some cases, i.e. the approximate solutions satisfy a
discrete entropy condition consistent with the differential entropy condition of the p.d.e.;
this property ensures that the approximate solutions are admissible on physical grounds.

A model 2D conservation law equation is constructed and the above properties are proven for
this model. This model can serve to represent two commonly used equations for simulating
inviscid, isentropic potential flow problems at transonic speeds: the Transonic Small Distur-
bance (TSD) equation and the Full Potential (FP) equation.
The new schemes are studied first in their semi-discrete (method of lines) versions. A new
Alternate Direction Implicit (ADI)-like time discretization is also presented for the particular
application to the low-frequency, unsteady, two-dimensional TSD equation; the results of the
numerical implementation of this implicit scheme on a variable computational mesh proved
satisfactory.

In [1 ], [7 ], ], [4 1 and [2 ], a number of shock capturing finite difference approximations
for solving the TSD and the FP equations have been proposed. These schemes satisfy

# This work was partially supported under grants ONR N00014-86-K-0691 and NASA NAG-270. Some of
the analytical calculations presented in this paper were obtained with the aid of Macsyma, a symbolic manipula-
tion program developed at the M.I.T. Laboratory for Computer Science ad supported by Symbolics, Inc. The
author's current addresses are: Department of Mathematics, University of California, Los Angeles, CA 90024
and Department of Mathematics and Computer Science, California State University, Long Beach, CA 90840.
Send electronic mail to marco@malh.ucla.edu.
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properties (iii) & (v), and with the inclusion of flux limiters, property (iv) as well. Prperties
(i) & (ii) are usually satisfied in all elliptic regions; in hyperbolic regions, only first order
accuracy is attained and the linear stability of the method is typically limited to values of the
Mach number in [0,M, ] where M, is large enough to include the transonic regime. These
schemes have a four-point bandwith and are type-dependent, i.e. they use different fo, mulas
for the difference approximations in the elliptic and the hyperbolic regions. They use central
differencing in the elliptic regions and upwind. differencing in the hyperbolic region:. The
upwinding is designed to take into account the correct region of influence and to kck-p the
shock front sharper. For the TSD equation, since the flow is quasi-unidirectional, the upwind-
ing is performed in that direction ([2 ]). For the FP equation, the upwinding can le per-
formed separately for the x-dependent term and the y-dependent term. This approach was
labeled directional flux biasing in [4 ]. Recently this approach was refined by introducing the
method of streamwise flux biasing (see [5 ]) in which the upwinding is performed in a direc-
tion close to that of the actual flow. Unfortunately, the method hence obtained is only first
order accurate (see [3 ], section 8, for a review of the schemes based on this method).
Our new method does not use flux biasing but a special kind of upwinding unifornly in all
regions. The resulting stencil, the same in all regions, is of 7-point bandwidth, with 4 points
upwind and 2 points downwind.

The format of this paper is as follows.

In Section 1, we introduce our new second order accurate numerical schemes for a class of
2D conservation law nonlinear p.d.e.'s which includes the TSD equation and the FP equation.
We prove a convergence result h la Lax-Wendroff.
In Section 2, we prove the linear stability of these schemes for the most commonly used
numerical fluxes for the TSD equation and the FP equation.

In Section 3, we present an extended version of these schemes which makes use of flux lim-
iters to keep the total variation non-increasing.

In Section 4, we prove a discrete entropy inequality satisfied by our finite difference a)-proxi-
mation in the case of the low-frequency, unsteady TSD equation and we show that this ine-
quality is consistent with the differential entropy inequality of the problem.
In Section 5, we describe a time-splitting algorithm for solving the unsteady TSD equation.

In Section 6, we present the numerical results obtained by implementing our finite difli-rence
method for the TSD equation for the flow over a thin airfoil.
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Numerical Simulations of Compressible Hydrodynamic Instabilities with

High Resolution Schemes

Claus-Dieter Munz Lutz Schmidt

Kernforschungszentrum Karlsruhe Universitat Karlsruhe

Interface instabilities arise in a wide variety of physical contexts. In

this paper, we will examine the numerical simulation of the large-scale

motion of two-dimensional interfacial instabilities. We will show numeri

cal results for the instability of interfaces separating two domains of 1!ie

same compressible fluid which move at different velocities namely the

Kelvin-Helmholtz instability, the Rayleigh-Taylor instability and the in

stability of a jet. Our calculations are based on the direct simulation of

the instabilities by numerical solution of the equations of compressible

fluid flow, usually called Euler equations. There are two different formu-

lations of these equations. Numerical methods based on the Lagrangean formu-

lation use a computational mesh traveling with the fluid. Hence these methods

seem to be ideal for solving problems which involve interfaces between two

fluids. However, these calculations can typically be carried out for sholt

times only. Then severe mesh distortion or mesh tangling will occur and le-

zoning must be performed in which all computational quantities are trans-

ferred to a new computational mesh. Because this procedure calls for mucl,

computational effort, the Lagrangean methods are not favourable for dealng

with large-scale computations. On the other hand, Eulerian methods, in which

the mesh is fixed, are ideal for treating flows with large deformations. But

interfaces are smeared out gver some grid zones and the movement of the ,n-

terfaces can hardly be seen. We will present a combined method: The flow

field is calculated by a Eulerian method, while the interfaces are moved in

a Lagrangean fashion according to the Eulerian flow field. This means tht

we discretize the interface and then within each time step we calculate ' he

new position of the discretized interface from the Eulerian flow field. This

may also be considered as a marker particle algorithm which is used to

visualize the movement of the interface.

We consider a class of high resolution schemes for solving the two-dimensio-

nal Euler equations

U +f(U)+ g(U) =q(U)t (x y

239



which, after van Leer /4/ are usually called MUSCL-type schemes. U denotes

the vector of the conserved variables p, pu, pv, e and f, g denote the fluxes

2 T 2 T
f(U) = (pu,pu +p,puvu(e+p)) , g(U) - (pv,puv,pv +p,v(e+p))

q is a source term, e.g. due to gravitational forces. As usual p is the dei-
T

sity, (u,v) is the velocity, e is the energy and p is the pressure. The n'a-

merical schemes are based on the one-dimensional MUSCL-type schemes formul t-

ted in a two-step format (see /4/) and on dimensional splitting. In the fj :st

step of the MUSCL-type scheme a piecewise linear approximation of the solition

is calculated from the approximative values at the grid points. This piec(-.ise

linear representation is determined by calculating slopes in each grid zou-i by

means of interpolation. Contrary to the schemes of van Leer /4/ and Colelli

/1/ we calculate the slopes in terms of characteristic values based on the

method of Roe /7/. By that we can apply different slope calculations on tlj'3

genuinely nonlinear and linearly degenerate characteristic fields which gives

sharp resolution of shock waves as well as contact discontinuities /6/. Slope

calculations which have been indicated and analyzed for scalar conservation

laws (see e.g. /5/) are used. To obtain second-order accuracy as regards the

time t the piecewise linear representation is advanced a half time step. Then

an upwind scheme is applied to these data to calculate the fluxes between the

grid zones which gives new approximative values at the next time level. Within

this algorithm each upwind scheme as reviewed in /3/ may be used.

The two-step algorithm can be implemented efficiently on vector computers. We

will add some remarks about it and present a comparison of computer times of

fully vectorized MUSCL-type schemes based on different upwind schemes and on

different slope calculations. Together with the tracking algorithm for inter-

faces the schemes have been fully optimized for vector computers. Very fa..t

schemes are based on the upwind scheme of Einfeldt /2/ and van Leer (see .3/).

Fig. 2 shows an example of our calculations. A diagram of the initial valies

for this jet is sketched in Fig. 1. A fluid to the left is separated by a small

band of gas flowing into the opposite direction. The interfaces between tile

different fluids are sinusoidally perturbed. The perturbations grow and tile

shear layers start to roll up into a Karman vortex street. These calculati.ons

have been performed on a uniform grid with 100 x 100 grid zones. About 10)0

time steps have been computed within 3 minutes of computer time on vector

computer Cyber 205. Because the roll-up of a shear layer depends on visco.ity,

large scale computations of interfacial instabilities may be used to measure

and to compare the numerical viscosity which is inherent in each scheme. We

will present a comparison of several schemes.
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Fig. 1: Initial values for a jet
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Fig. 2: Numnerical simlations of a jet
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..............................................

The Euler equations describe inviscide compressible flows. In
the case of unsteady flows, we deal with a hyperbolic problem,
where the time is playing the role of the "hyperbolic"
coordinate. Also for the steady flows we may have a
hyperbolic problem, provided that a fully supersonic flow is
developed: in this case any space coordinate along which the
velocity component is supersonic can be the "hyperbolic"
coordinate.

The Euler equations are founded on the three basic laws of the
physics which account for the -onservation of the mass, the
equilibrium between the inertial forces and the pressure
gradient, and the respect of the first principle of the
thermodynamics. The so called "centered schemes" methods are
operating directly on this original form of the governing
equations. No reference is done to the hyperbolic nature of
the problem, except, for some methodologies, in the definition
of the step of integration and/or in the numerical treatment
of the boundaries.

The hyperbolic character hidden in the original equations can
be put in evidence by a proper rearrangement of them. We
refer to this work as to the formulation. Thre are different
formulations, but each of them is more or less related to the
basic ideas developed in the old method of the
characteristics. It is in the formulation that the wave-like
nature of the problem is emphasized, and it is recognized that
the evolution of the flow at a given point is determined by
the merging of signals there, after they have been propagating
along characteristic rays. For these reasons these approaches
are generally known in the literature as "upwind"
methodolori.es.
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Different upwind formulations have been proposed. Some of
them are founded on the quasi linear form of the governing
equations (lambda formulation, split coefficient method,..),
other are based on the conservative form of them (flux-vector
splitting, flux-difference splitting ..... ) They only differ
each other because the problem is not linear. For a
linearized version of the Euler equations, all of them turn
out to coincide perfectly. The main feature common to all
these formulations is the attempt of extracting, from the
usual thermodynamic properties and the velocity, informations
about the corresponding waves or signals travelling there.

The present lecture refers to the "flux-difference splitting"
(FDS) formulation and is addressed to the presentation of some
different forms in which such upwind formulation has been
proposed in the literature. The attention will be mainly
pointed toward the unsteady flows (the time is the "marching"
coordinate), since almost all the contributions refer to these
problems. However we stress that all the following concepts
can be easily extended to the steady supersonic flows, whereas
the same kind of extension does not look feasible for other
formulations such as the flux-vector splitting.

The FDS formulation is based upon an interpretation of the
initial data (given at a discrete set of computational points)
over the intervals of the computational grid. Constant or
variable distributions of the flow properties can be assumed
in the neighboring of each computational point. Therefore a
discontinuity of the flow properties will generally occur at
the middle of an interval. Godunov (1959) has proposed to
look at the evolution of this discontinuity along the
hyperbolic coordinate and to draw informations on how to spilit
the difference of the flux cver each c,-'mputational interval.
Such a splitting determines which part of this difference is
going to affect, through the governing equations, the flow
evolution at points located on one side of the interval, and
which parts will act on the opposite side. The prediction of
the evolution of the discontinuity is known as the solution of
a Riemann problem. Once these splittings have benn operated,
we can proceed to the numerics and plug the terms, in which
the difference of the flux has been split, into a numerical
approximation. The approximation can be characterized by the
assumed kind of discretization (finite differences, finite
volumes, finite elements,. . . ) and by the numerical scheme
(explicit, implicit, order of accuracy.... )

In his original presentation, Godunov was pointing out two
shortcomings in his procedure. The first was represented by
the too large computational effort needed in achieving the
exact solution of the Rieman problem (the possibility of
shocks brings to tedious and time consuming multiple
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iterations). The second shortcoming was represented by the
unsatisfactory accuracy of the numerical results, since he was
using the plain first order scheme. In fact the very
brilliant idea of Godunov was riot performing so well because
he was looking at the exact solution of the Riemann problem
(with the related penalty in the computations), without
getting any profit from this expensive work in the following
numerical scheme, which was the simplest one (with the related
penalty in the accuracy).

Therefore the following research efforts have been addressed
in two directions. On one side the search for efficient
solvers of the Riemann problems, even approximate solvers. On
the other side more sophysticated interpretation of the
initial data and more suitable definition of the Riemann
problems in order to increase the level of the accuracy.

Iterative time consuming procedures are needed for solving a
Riemann problem, because of the non linear and non isentropic
behaviour of the shocks. To overcome this problem, Roe (1980)
has proposed to replace the original non linear problem with a
linear one (chosen in some convenient way in oreder to meet
some positive requirements). Now the linear problem is solved
exactly and quickly. A completely different approach has been
proposed by Osher (1980). He suggested to neglect the jump of
entropy generated by the shocks originated in the Riemann
problem. The resulting approximated non linear problem has
now an immediate and exact solution, based on the properties
of the Riemann Invariants in omoentropic flows. A variation
of this solver has been also proposed by the present author
(1983). Here we want to stress that the above approximated
solutions of the Riemann problem only affect slightly the
splitting, but do not touch the wholeness of the Euler
equations which will be integrated in their full form.

In order to improve the accuracy of the numerical integration,
one can use numerical schemes more elaborated than the
original first order scheme proposed by Godunov (which was not
performing at the best level of accuracy, but was, and is
still now, very cheap in terms of computer memory and time and
very robust without violating any monotonicity criterium in
the numerical capturing of shocks).

A different approach for improving the accuracy is based on
interpretations of the initial data more sophysticated than
the piecewise constant value distribution proposed originally
by Godunov. Remarkable contributions have been given by the
MUSCL method (Van Leer and Woodward, 1979) and the PPM
procedure (Colella and Woodward, 1984). Here the attention is
wholly focused on the interpretation of the initial data in
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terms of linear or parabolic distributions around a
computational point. The resulting Riemann problems are
solved through an almost exact algorithm and provide the terms
in which each difference of the flux is split. The following
integration of the full Euler equations is carried out with
the plain first order scheme. However the final accuracy
turns out to be at much higher levels, owing to the previous
sophysticated interpretation of the initial data.

The above different contributions to the FDS formulations will
be presented in a uniform manner, in order to put in evidence
the different features. For this reason the physics will be
described under the eulerian point of view, whereas in some
contributions has been originally considered under the
lagrangian one. Finally the extension to the steady
supersonic flow problems will be shown to be straightforward.

i
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A FULLY IMPLICIT SCHEME FOR MULTIPHASE FLOW IN ONE DIMENSIONAL POROUS MEDIA

Jorge G.S. Patino

Department of Mathematics
Pontificia Universidade Cat6lica do Rio de Janeiro
22453 Rio de Janeiro-RJ, Brasil

We show that a system of equations (cf. Eq.l) appearing

in multiphase flow in porous media has a global solution in

time. The method of the proof is based on the random choice

method. As a result we also obtain a fully implicit numerical

scheme for the solution of these equations.

1. Statement of the problem

Consider the following system of differential equations

ut+ v f (u) = 0 xE [a,b] , t O

(1) v = 0

n
v -k(u)p x uE n , v dR

which arises in the study of incompressible, inmiscible, no

capillarity, multiphase flow in porous media [1] . In (1) the

components of u are the saturations (or volumetric concentra -

tions), v is the velocity, p is the pressure, k is the permeabi

lity and f is the flux function defined in terms of the indivi-

dual permeabilities. Equations (la), (ib) and (1c) represent the

individual mass balances, the imcompressibility condition and

Darcy's law respectively.

Suppose that the Jacobian matrix df has real and distinct

eigenvalues X on a region R of the u space, then(la)is an hy -

perbolic system of conservation laws which is coupled to the

. elliptic equation
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(2) (k (u)px) x = 0

obtained by substituting(lc) in(l.b).

We shall show below that system (1), interpreted in the

weak sense, has a global solution in time for continuous boun -

dary conditions pa(t) = p(a,t), Pb(t) = p(b,t), Ua(t), ub(t)

and initial data u 0(x) with small variation provided k(u) is

continuous and M>k(u)>E for some C,M. The proof of this result,

based on the random choice method , will provide an

implicit scheme for the numerical solution of (1). In the scheme,

v at time tj+ 1 is calculated using the approximate solution u at

time tj+ I , but the invariance properties of equation (la) will

permit us to actually obtain an explicit formula for v(t .

In [3] Marchesin showed that the scalar analogue to (1) ha.: a

global solution in time using a somewhat different approach

that does not yield an efficient computational scheme.
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ON OVERDETERMINED HYPERBOLIC SYSTEMS

Zbigniew Peradzynski

Institute of Fundamental Technological Research

Polish Academy of Sciences

Swietokrzyska 21, 00-049 Warszawa, Poland

We consider an overdetermined (m 1 1) quasilinear first

order system of PDE's

ap u i S 1 ... m
A~~u  : fS(u~x). ..

A j (u,x) i =
Ox V = 1,...,n

The Maxwell equations (with extra constrains div E = 0,

div B = 0) or the vorticity equations in hydrodynamics can

be viewed as prototypes of such system.

For any u0 , x0 we define a linear space I(xo,u o ) of

integral elements as composed of all 1 x n matrices (p.)

satisfying

j u ,(u'x ) P 0.
up j 3 0V L

Special role is played by the characteristic elements which are

the matrices of rank 1, i.e. they are of the form p3 ri"
The system is said to be hyperbolic at (xo,U o ) if and only

if:

1i The space of integral elements I(x,,u o ) is generated (as

a linear space) by the characteristic elements;

20 It is an involutive system (i.e. it is compatible).

General properties of such system (solubility, restrictions

appearing for possible boundary conditions etc.) ari

considered. In certain cases the existence can be proved.
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Theory of overdetermined systems can be helpfull in

investigating the structure of the solution set of the well-

determined systems (1 = m). For example, the characteristic

determinant of such a system

det IA X1, I = 0

defines a cone of characteristic vectors. This cone, in

general, consists of a number of branches. Ldt us take a

simple branch. It turns out that there is a system of PDE's

associated with this branch - the overdetermined system

consisting of all modes from this branch only. If this system

is compatible then one says that the interaction of modes from

this selected branch do not involve other modes. In this way

the interaction of modes can be investigated. There is a number

of results conserning this question.
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Runge-Kutta Split-Matrix Method for the Simulation

of Real Gas Hypersonic Flows

M. Pfitzner

Messerschmitt-Boelkow-Blohm GmbH
Ottobrunn , FRG

In recent years there has been growing interest in the possible development
of hypersonic aircraft and reentry bodies in the US and in Europe. The construc-
tion of these configurations requires an accurate prediction of the flow about
three-dimensional bodies at Mach numbers ranging from 0 <= Mw = 30.

In the regime of hypersonic flow (M, > 4) very strong gradients and shocks
appear in the flowfield, which have to be resolved on relatively coarse meshes
for 3-0 calculations. Because of the strong compression (Pmax/Pw > 1000 at
M. = 30) in the hypersonic regime high temperatures occur and air cannot be
treated as an ideal gas. For a realistic simulation of the flow a robust and
accurate algorithm including real gas effects is mandatory.

We integrate the instationary Euler equations in quasi-conservative form in
generalized coordinates:

QT + + A-Q- + Bn+ (1

+ B Qn Q + +  I C-Q (- = 0

The matrices A±,B',C' are split according to the sign of their eigenvalues
/1,2,8/. The space derivatives of Q are calculated with a third order accurate
upwind-biased formula /3/.

+ 1Q - (Qm-2 - 6Qm-1 + 3Qm + 2Qm+l)

im 6A& (2)
I

- (Qm+2 - 6Qm+l + 3Qm + 2Qm-l)

The bow shock can be captured or fitted /4/, whereas imbedded shocks are
always captured. Owing to the simple geometry of reentry vehicles and the strong
bow shocks encountered there, the shock fitting option is preferred in this
case. For hypersonic flows, where real gas effects are important, the pressure
of the gas is a general function of the density and the internal energy. The
flux matrices A,B,C can be calculated with their eigenvectors and eigenvalues
for arbitrary pressure p(p,c) and the shock fitting algorithm can be gene-
ralized for this case /5/.

The time-stepping towards the stationary state between time levels n and
(n+1) is done with an explicit three-step Runge-Kutta method /6/:

Q(1) = Qn - al CFL p(Qn)

Q(2) = Qn - a2 CFL P(Q(l)) (3)

Qn+1 = Qn - a3 CFL p(Q( 2))

where the operator P contains the space derivatives. Second order accuracy
requires a3=1 and a2=1/2. The coefficient al cannot be chosen such that the
algorithm becomes third order accurate but serves to increase the stability re-
gion'of the algorithm. We have done a von Neumann stability analysis of the
Runge-Kutta scheme (3) for the 1-d linear advection equation for second order
central and third order upwind-biased space discretisations. For central dif-

rferences ai>1/4 is needed for stability and for al=1/2 CFL numbers up to 2 may
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be used. In contrast, for the upwind-biased space discretisation ai=1/4 maximizes
the stability region with CFLmax = 1.77. Fig. I shows a comparison of the square
of the modulus of the amplification factor g as a function of the CFL number and
s=sin 2 (kAx/2) for the one-step and the three-step Runge-Kutta time-stepping
schemes. The big square hiding part of the plot of the function IgI2 (CFL,s) de-
notes the stability limit g=1.

The one step algorithm is only weakly unstable at wave numbers k+O for
small CFL numbers. It can be used in practical calculations of 2-d and 3-d
inviscid flows provided the cell aspect ratio is not extremely small. At a fit-
ted bow shock a global time step must be used even if the rest of the field is
calculated with a local timestep. For many configurations a fully converged re-
sult may be achieved with the one step algorithm depending on the configuration
and the Mach numbers involved. The weak instability normally does not blow up
the code but leads to small instationary disturbances in the flowfield, which
do not die out and prevent a true stationary solution.

For the iterative Runge-Kutta scheme one additional storage of an interme-
diate value of the flow variables is needed (in contrast to three values with
the classic four step Runge-Kutta scheme /7/), but a larger time step can be
used and the linear stability of the algorithm is guaranteed.

Fig. 2 shows a comparison of lines of constant temperature in flow about a
hemisphere-cylinder at M.=11, a=O, H=50 km (T.=271 K) for ideal gas (y=1.4)
and equilibrium real gas. A local time step with CFL=1.5 was used and the cal-
culation was converged after 500 time steps. The standoff distance of the shock
is smaller for the real gas case and the temperature near the stagnation point
is much lower. The wiggle in one of the real gas temperature isolines is a re-
sult of inaccuracies of the curve-fit routine used for the calculation of the
real gas temperatures/9/. It is not visible in the flow variables.
The temperature isolines on the HERMES forebody in ideal gas and real gas flow
with M,,=1O, a=30, H=50 km are displayed in fig.3. Fig.4 shows the
pressure and the temperature distribution on the body in the symmetry plone.
It reveals the small influence of the real effects on the pressure. The %tag-
nation point temperature (5700 K for ideal gas) is lowered to 3120 K by the
real gas effects.
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Fig.1 :Comparison of the square of the modulus of the amplification

factor g of the third order upwind-biased space discretisation

I I 1g(CFLS)1 gC *)

I ,. ~ CFL

s~(kAX/Z)

Lb ~ ~CFL / ~ -- _

Fig.la one step algorithm Fig.1b three step Punge-Kutta algorithm

Fiq.2 :Comparison of temperature isolines of flow about a hemisphere-
cylinder at M1,, = 11, oL = 0, H 50 km for ideal gas
and real gas (AT =100 K)
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F iq.2a ideal gas Fig.2b equilibrium real gas
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Fig.3 temperature isolines on the Hermes forebody at M4. = 10, a = 30.

H = 50 km for ideal gas and real gas (AT =100 K)

Fig.3a ideal gas Fig.3b equilibrium real gas

Fig.4 comparison of the pressure and temperature distribution
on the HERMES forebody in the symmetry plane for real gas
and ideal gas (z coordinate in (1/450 mi)
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Fig.4a :pressure distribution Fig.4b temperature distribution
+ : ideal gas luv side + :ideal gas luv side
* : ideal gas lee side * : ideal gas lee side

o : real gas luv side o : real gas luv side
x : real gas lee side x : real gas. lee side
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" ON SOME VISCOELASTIC STRONGLY DAMPED NONLINEAR WAVE EQUATIOINS "

We study the problem of existence,uniqueness and asymptotic b,-haviour
for t- Oo of (weak or stronq) solutions of equations in the form

N

u U) - 2'.(u )+ f(u ut) = 0(I)utt - ut  i= / xc 1 x.'u
1 1

A- 0, (x,t)( Er x]OTL ut= 6u/6t, uxi = u/ 6 x

with various boundary and initial Nconditions on u(x,t).
In (1).Q is a bounded domain in F? with a sufficiently smooth boun-
dary3 n , d. (i=I,...N) are continuous functions satisfying certain
monotonic and other conditions.
The case \>O corresponds to a nonlinear Voight model (for cr. tionli-
near). The case X = 0, N=1 and f(u,u t)= jut sgn (u t ) , O,..-A 'J with
nonhomogeneous boundary conditions corresponds to the motion of a

linearly elastic rod in a nonlinearly viscous medium. Equations of
the ty'-e (1) with f=0, were given the first systematic treatmrnt by

GreenL ,rg,Mac Camy and Mizel 4lin the case of space dimensior, N=I.

We studied (I) with>O and f(ut)=lutl sgn(ut), 04,0(0, u(x,ll)= o (x)

- . . 2
u t(xO)=uI(x)[Ij. For u in H (c) , u in L (n) and o-.i in C(0?,1,T) non

decreasing , i (O)=O and inducing mappings of L 2La) into itself, ta-
king bounded sets into bounded sets, the problem admits a glot'al weak

solution.lf in addition the a'!s are assumed locally Lipschitzian,then
.1 1 2 2

the solution is unique. For N=1, u in H (i)(1H W) , uI in L (), o.

in C I(0,DR) with 6! >0 and locally Hilder continuous, there exists a

unique strong solution u(t) of the initial and boundary value oroblem

i.e. t-+ u(t) is continuous on t4 0 to HI (n)H 2(.n) and twice (ontinu-

ously differentiable on t> 0 to L () .

If we consider the problem with )>0, the function f being a function

of u :f(u),then for uo in H (), u in L 2 (12) and a certain local Lip-

schitzian condition on f, a local existence and uniqueness theorem is
proved[2] ,using the method of successive linearizations. If we stren-

gthen the above hypotheses and assume that 14N63, aF H 0( )nH (a2) and
L2 0 0

u1 EL (fl) while f is to satisfy no other condition than f' 4-c for

c> 0 ,then,the unique solution u(t) exists for all t-O,with the proper-
ty that u t(t) andAu(t) decay exponentially to 0 as t-eoD ,more pre-
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cisely we have the result

J U(t)j + u t(t)l & Me - for all t1 0

here 1. 1stands for the L ()-norm )

This last result generalizes a result of Webb[9]

In the case N=1, X-=, 6(x)=x and f(ut)=IutI sgn(ut), 0t 'I, we stu-
dy the equation (1) with a nonhomogeneous condition namely

u (Ot)= g(t), u(1,t)= 0 (2)

Then the global existence and uniqueness of the initial and boundary

value problem (1),(2) with u F HI (n) and u1EL 2 () can be proved by
using a Volterra nonlinear integral equation and the monotoriicity ge-
nerated by the nonlinear term[3.

Note that for the equation of the form

ut- Au = Ef(t~u,ut) , (x,t)c]O,I[xlO,T[ (3)

associated to Dirichlet conditions , a theorem on local existence is
proved[5land an asymptotic expansion of order 2 in E ( E>O) is obtai-

ned, for Esufficiently small and fF CI ( O, O0[xR 2 ).
The linear recursive schemes developoed in[2)enables us to use a per-
turbation technique based on the ideas of best uniform approximation
by polynomials, which considerably extends the classical Tau method
of Lanczos. This Tau method has been developped by Ortiz[5jand com-
putational procedures for the numerical treatment for partial diffe-
rential equations with polynomial coefficients have been discussed
by Ortiz and Samara[t]. Ortiz and Pham Ngoc Dinhr62have discussed the
numerical solution of a semi-linear hyperbolic problem of the follo-
wing type

u - A u = f(t,u) (4)

and sufficient conditions for the quadratic convergence are given in
this paper.By using this best approximation technique and these li-
near recursive schemes we effectively produce numerical solutions of
a high accuracy.

[I] Dang Dinh Ang and A.Pham Ngoc Dinh - Strong solutions ,,f a qua-
silinear equation with nonlinear damping. To appear in SIAM J.
on Math.Analysis(I9B7

[2] Dang Dinh Ang and A.Pham Ngoc Dinh - On the strongly diimped wa-
ve equation : utt - 4u - au t + f(u) = 0 . To appear

[3] Dang Dinh Ang and A.Pham Ngoc Dinh - Mixed problem for some se-
mi-linear wave equation with a nonhomogeneous conditiont. To ap-
pear in Nonlinear Analysis T.M.A. (1987)

[4] J.M.Greenberg,R.C.Mac Camy and V.Mizel - On the existence, uni-
queness and stability of solutions of the equation
cr'(ux)uxx + uxt x = eoUtt

J.Math.Mech. I7( 1968)pp.707-720

[5] E.L.Ortiz - The Tau method. SAMJ.Numer. Analysis 6(969) pp.
480-492
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The Cauchy problem in three-dimensional thermoelasticity

Reinhard Racke

Iristitut ffur Arigewandte Mathernatik der Universitfit Bonn

Wegelerstr. 10 , D-5300 Bonn

We consider the Cauchy problem in three-dimenisionail nonlinear therF1ioclfAticitv

for a medium which is homogeneous arid initially isotropic. Tile gove-rning

e qntjons for the displacement, vector U and the temrperature differenice 0

repre-sent a hyperbolAic-parabolic coupled system. The interesting quostion

whijAi, arises is if the behaviour will be dominnted by the, hyperbolic p'art -

mainily equationts for U plus coupling terms - or by the parabolic one - moainily

an equation for 0 plus coupling terms. In the case of pure elasticity one

knows thaL there exist global smooth solutions for small data if thle

non linearity degenietates up to order 2 (see (4) below) (cf. (1) ). Ili the

genuine niotiliniear case there occurs a blow up for sufficiently smnall randially

sy nometric dalia with comipac t support (cf. (.Jol . This raises the qujestion wether

theO (liSSipatiin effect induced by the internal dampinvg i b rough heat condiuc

tion is strongr eniough to prevent smooth solutions fromt blowing up for large

(]fta or atlet for small data.

For n otiv-d imenisionoal mlodel the latter is true ns was ,hown~ in I Z& 8 , rf.

a-lso the similar- remult for the initial boundary value problem ini [I . For

l-arge data already in one dimension at blow up occurs as was proved in I NA I]

The one-dimiensional behaviour is dominated by the heit coiir1uction (-qua-

tioti in sonie sense which elucidates these results, e.g. no trnnsversa-l wnVes

c-oin ap pear. Ir h igher d imorision the behaviour relies (iii cciij'c to res tip to

1 oW which stre~ss the influence of the hyperbolic part.

Olur contr ibut0ion in this lecture will be to demru'strite thlat global smooth

solutions exist for small data if the nonlinearity degenefrates up to order 2'.

The method of proof is based on that developed by S. K-liwinan and G.

P~otice (cf. I i{&P! [ Po] , similtirly by J. Shatah ( Sit] ) anid simiultnously y i'-ldr;

the tinie-asymptot n: behaviour and the scattering be-hav iour of the solution.

More precisely we show the following:

The system for the (displacement U and the temperature difference reads as

follows:

I '')C (7 IT tt) ;X, 4 E Ci, (7 11,0) i j1,2,3t o axm' xax ~
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(2) a(17 U,0d (7 1,078) + t(c (7 u, r, - LUat f ,) +rim <t M

aU
(3) U(t-O) - UP, a (t=O) = U', Ot:O) = 0

with known coefricients Cimjk, Clm, a, f, q and data 10, 11, 0 . Th,- notline

arity shall degent-rate up to order 2 near the origin, e.g.

(4) ICimjk( 7  1J,) - Cimjk(0,0)1 =  0(17 U12 + 1012)

(and similar for the remaining terms). Then we prove under the assumption

(4):

Theorem There are integers so, sI, s2 and a 6 > 0 such* that if

[SP,[, 0, ) 1 W r.02 A n ff ,

ri4* tlh

I (SI.1, U', 00 .0 - I(SDIP, U0, 000 < 6

there exists a unique smooth solution (U,8) of (1), (2), (3) with

a

S;DU, a- U ,[ ,] W " -1,2  a o, ){, . ,  Wr ' 2  !.

0 -07 ( , ,] , W - 2 ,2 n f 'l ( [ 0 , _, ), W S O , 2 ,

I -, ..I(t),aI 0(1) as t .l~sp!!,SO,2

(SDUI are certain combinations of first-order derivatives of U). Moreover there

is a solution (U., 0.) of the associated linear problem for data (112, .'., 02)

such that the scattering behaviour is described by

Jira I(SDU, y't' 8)(1) - (SD!!, - 9, .)(t)n - 0

a gr ____

at

The method of proof is the following:

1. A suitable transformation to a first-order system is given:

Vt + AVt = F(V,7 V, 72 V), V(O) = Vo, where -A, being a differential opera-

tor with constant coefficients, generates a contraction semigroup.

(4) will imply:

(5) IF(W)I - O(IWIVI) near the origin.
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2. The time-decay of the associated linear problemn is analyzed and it is pro-

ved that

(6) NV( t)q,n const (14t) _ 
-2

1 q) ,VOU p q , - 2.
N ,P q 1)

3. A local existence result for (1), (2), (3) in Ws, 2 spaces is yieldei by

S. Kawashiina [Ka) .

4. A high energy estlinale of the type

(7) UV(t).,, i ronst IV"'N, 2-exp f(iVi, + *VtJI .# N7VIl2 + g7 2VI a1

(P

is proved as well as

5. a weighted a priori--estiniaIe:

slip (l Kt2! UV(Wt I M,, , MO being independent of T, foi
O0<t T ,

small (,VI1 4V 01 ).

6. This yields an a-priori-estimate for EV(t)lSO,2 and thus allows to

apply the usual continution argument.

The procedure indicated above has been developed and succesfull-

applied by S. Klainerman and G. Ponce (cf. [K&PJ , [Po], similarly in [Shi

e.g. for nonlinear wave equations, nonlinear heat equations, nonlinear

Schrtdinger equations or the equations of compressible viscous and

heat-conductive fluids. This works whenever one has sufficiently stronf,

estimates in 1. and 2. - especially a semigroup structure of the solutionr;

of the linear problems - and of course a local existence theorem.

The lecture is organized as follows: In section 1 we give a short

derivation of the equations, section 2 presents the formulation as :i

first-order system (which is in some sense crucial), section 3 present!

the main theorems. In section 4 the time-decay of the associated linear

problem is analyzed and in section 5 we prove the main theorems.
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ON THE POSMBILIUT AND ThE CISUCURH OF 09,MATINO
SOLUTIONS 1D SOME NONLINAR SSTlIMS OF 0ONSERVATION LAWS.

Michel RASCLE
D6partement de Math~matiques,Universit6 de NiceParc Valrose

06034 NICE CEDEX,FRANCE

We study the structure of the Young's measure associated to a
sequence of approximate solutions to some 2x2 hyperbolic systems of
conservation laws.This family of probability measureswhich depend on x,t
describes the possible oscillations which can (or can't) propagate.We show
that oscillations can't propagate except if the system is linearly
degenerate,and that even in this case,no oscillation can develop if It was
not present in the initial data.This study uses(and is in the spirit
of)previous results of R.DI PERNA,M.RASCLE,D. 5ERRE AND L.TARTAR.
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A NUMERICAL SCHEME FOR COMPUTING HYPERSONIC

VISCOUS FLOWS ON UNSTRUCTURED MESHES.

Philippe ROSTAND * and Bruno STOUFFLET **

• INRIA-MENUSIN Domaine de Voluceau Rocquencourt BP 105 78153 Le Chesnay Cedex FRANCE

** AMD-BA 78 Quai Marcel Dassault 92214 Saint Cloud FRANCE

Computing hypersonic viscous flows requires both oscillation-free,for strong shock-capturing,and accu-
rate,for boundary layer representation,approximation of the Navier Stokes equations.The use of second order
upwind schemes for the convective part,combined with centerly discretized diffusive terms,seem to be a good
approach,although added visosity must be carefully controlled. In a recent paper,Van Leer et al [1] showed
the influence of the choice of the numerical flux formula on the added diffusion.

We derive here an extension of an existing code for inviscid gas,based on approximate Riemann solvers
on unstructured meshes (see [2D,to the case of viscous fluids.We analyse the slope limiting procedure in
terms of added viscosity, our goal beeing to take into account in its definition the physical diffusion.

1 Spatial Approximation
Our scheme relies on a finite volume forimulation,usig unstructured triangular (tetrahedral) meslies.We

upwind the convection terms through Osher's Riemann solver (see[3]),extended to second order by a MUSCL
type method (see[4] for the MUSCL method,[2] for its extension to unstructured meshes).We give the for-
mulation in two dimensions for simplicity. The adimensionalized Navier-Stokes equations are

attT + div(pu)=0

=1(pu)1
(. + div(pu 0 u) + VP = -Ldiv(D(u)) (2)

LRe

+ div((E + P)u) + -AT)(3)

where: p is the density, u E R 2 is the speed , E is the total energy , D(u) = Vu + Vut - ?V.u I T
K_ Lu2 is the internal energy, P = (-y- 1)pT is the pressure, Pb, is the Reynolds number , Pr is the Prandtlp 2 '

number,
with boundary conditions: on a wall

u=0 , T=T. .n (4)

at infinity :

u = (cosa, sino) , p = l , T ( I)M2 (5)

where M. is the free stream mach number and a the angle of attack .
In fact, we enforce the four boundary conditions (5) at the inflow,but only three of them at the outflow

in the supersonic case.
We denote by F the convection flux,byFd the diffusion fluxso that the Navier Stokes equations are:

-C + div(FC(W)) + div(FiW)) = 0 (6)

where W is the vector of the conservation variables.
We take a piecewise linear (P1) approximation of the conervation variables,and use control volumes

(cells) limited by the medians of the triangles.
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example of the unstructured meshes used definition of the geometrical quantities

For every vertex S',we define the cell C surrounding it, OCi its boundary, K(i) the set of the neighboring
nodes, vi the outward unit normal to OCi ; for jE K(i),we define Tij and Tj, the downstream and upstream
triangles of SSj, OS,, the segment of OC separating Si from Sj, 8S'jr its right half, OS! its left half, M, the
middle of OSj, M!j the middle of OSij, ijthe set of triangles containing both S and Sj , Fje(W), Fdr(W),
F4'(W) by

Fi'(W) = F(W).j Za'vidl , Fi'"*(W) = F d(W). jor z',dl , Fidj(W) = FJ(W). jas z'dl

W,, and Wqj by

WT, = W, + 4((l - 1C)V,,W + (1 + 1C)VW).SSj

Wii = Wj - -L((1 - C)Vji W + (I + XV )Ss+ 1 c)VW).SSj

where V1jW and VjW are the gradients of W on T and Trj while VW is the gradient on the triangles
containing both Si and j, Ic E [-I, 1I,si and sj are the slope limiters,s E [0, 1], si (resp.sj) is a decreasing
function of IVjW - VWI, (resp.IVjjW - VWI).

Osher's flux is defined by:

'tosHER(U V) = 1j~j(U) + Fjej(V) _ VIc'W id()
F,-- , 52 J (W)l ()

The finite volume formulation is:

Area )W- +EW. V,,) K(at( Fe (W(Mlj)) + F=(W(Mr,) 0 (8)+EJ(X(i)''. (Wii,Wj) ((S)

2 Relation with Finite Elements and error analysis
To examine what numerical viscosity is produced,we apply this discretization to a linear advection

diffusion equation:
OW +AOW +OW

+ boundary and initial conditions.
It is easy to check that that a centered finite volume scheme,namely the preceeding formulation with

,c=l and s=l,is strictly equivalent to the PI centered Galerkin approximation,which is well known to be
second order accurate for this parabolic equation.So we can symbolically write our scheme as:

F.V. = F.E.M. + R
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with:

R = EjeK(i)[lli:(L-4--'i(VjjW - VW) + si2 V )Ss

+ -L svj - VW) + 2i-'W.ij (10)

with HiT. = f Li#,dI) A + (fa,, vi/udl) B
and llnt. =l~II1,Y 2 l***I1

We analyze this remaining term, to isolate the added viscosity as a function of the slope limiters,and
consequently to chose the most adapted limiting procedure,in a way similar to that defined by Hughes and
Mallet in (5].

3 Time discretization
A classical Fourrier analysis on the linear equation (9) shows that the stability of an explicit scheme

requires~ ~ thta beeing a constant lower than l.This condition can be very restrictivefo
fine meshes.

For this reason,we introduce an implicit linearized algorithm,defined in [21 for the inviscid case,and
extended here to the Navier Stokes equations. If Ri is the discrete non linear operator associated to the
steady Navier Stokes equation,and M an approximate jacobian of R,the scheme is:

(I + AtM)(IWhn 1 - Wn') = -AtR(W,') (I1

4 Numerical results
We first compare our scheme with a centered Galerkin like code with no artificial viscosity [61, on a

weakly transonic flow over a Naca 0012 airfoil (Mach = 0.85 , Re =500).The use of the implicit scheme
divides the needed cpu time by more than 8 on an IBM 3090.We present the comparison of the skin friction
and drag coefficients.

. .
..........

centered F.E.M. code: CD =0.214 upwind F.V. code:CD =0.226
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Flaw over a CY~iiider: Mach =8 ,Re =1000.

Iso Mach lines dens-ity on the body

Flow over an ellipse: Mach =20 ,Re =1000.

Pressure contours

References

1)] B.Van Leer,J.L.Thomas,P.L.Roe,R.W.Newsome,A Comparison of Numerical Flux Formulas for the
Euler and Navier Stokes Equations,proceedings of the AIAA Hlonolulu meeting,1987,p 36-41.

(21 B. Stoufllet,J.Periaux,L. Fezzoui,A. Dervieux, Numerical Simulations of 3-D Hypersonic Euler Flows
Around Space Vehicles Using Adapted Finite Elements ,AIAA paper 87 0560 Reno 1987.

(3] S.Osher,S.Chakravarthy,Upwind difference schemes for %he hyperbolic systems of conservation laws,
Mathematics of Computation,April 1982.

(4] B.Van Leer,Computational Methods for Ideal Compressible Flow,Van Karman Institute for fluid
dynamnics,lecture series 1983-04,Computational Fluid Dynamicsi, March 7-11 1983.

[5] T.J.R.Ilughes,M.Mallet,A New Finite Elements Formul.itian for Computational Fluid Dynamics:ITI
The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems,Computer Methods
in Applied Mechanics and Engineering,n. 5 8 ,198 6 ,p 305-328.

[6] F.Angrand,Numerical Simulations of Compressible Navier Stokes Flaws , GAMM Workshop , M.O.Bristeau
R.Glowinski, .. Periaux , H.Viviand (eds),Friedr. Vieweg und Sohn,1987,p 69-85.

266



R

A NEW NUMERICAL TECHNIQUE FOR INTEGRATING
TIE NAVIER-STOKES EQUATIONS

B.L.Rozhdestvensky and M.I.Stoynov
Keldysh Institute of Applied Mathematics

USSR Academy of Sciences
Miusskaya sq., 4
Moscow 125047

USSR

The incompressible viscous fluid flows are described by solutions of the Navier-Stokes equa-
tions, and the incompressible inviscid fluid flows by solutions of the Euler equations. The both
systems of equations are not of a hyperbolic type. Nevertieless these models are used to describe
approximately the poorly compressible "inviscid" fluid or gas flows.

In this report a new numerical technique is considered for integrating some boundary value
problems involving the Navier-Stokes equations and suitable for simulating the 3D nonstationary
incompressible low-viscosity fluid flows (including turbulent) flows. For correct simulation of
turbulent flows the technique used must satisfy the following very stringent requirements:

(a) the solutions allowed by the numerical algorithms must describe sufficiently accurately
the time evolution of small perturbations of stationary flow regimes (stationary flows,
pulsating flows, etc.);

(b) the algorithms must have the conservatieness property: the allowed solutions must
satisfy the discrete analogs of the mass, impulse and energy conservation laws.

The computation experience shows that unsatisfaction of conditions (a) and (b) may lead to
the abrupt growth of solutions and overfilling of the CPU or to incorrect simulation of turbulence.

The numerical technique was constructed for simulating the fluid flows in an infinite plane
channel K = {(x,y,z) : (x.y) E R2 , z < 1) with fixed walls - the planes z = ±1.

The Galerkin method and trigonometrical polynomials are used for a spatial discretization
of the problem with respect to the variables x,y (the flow velocity field is approximated by the
functions with a finite number of degrees of freedom). The collocation method and the Jacobi
polynomials are used for the problem discretization with respect to the variable z.

For the time discretization the implicit second order Crank-Nicolson type scheme is em-
ployed. It was shown that the integration scheme obtained in the linear approximation is abso-
lutely stable and the discrete analogs of the nonlinear conservation laws are satisfied. From the
energy conservation law analog it follows that the scheme has the so called "nonlinear stability"
property.

The technique described was used to carry out a considerable number of computations of
2D and 3D laminar and turbulent flows. The turbulent Poiseuille flows, the pulsating turbulent
flows and the Couette flows in a plane channel were simulated. The computations showed a high
efficiency and reliability of the technique proposed.

The results and the scheme properties are discussed, and the possibilities of using the
technique for computations of compressible media, both viscous and inviscid are considered.

4.
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APPENDIX

In our algorithm the approximate fluid velocity V(t,x, y, z) is represented in the form

M N Q
V(t,x, y, z) = (1 - Z)2  Z ,n,,q(t) P(1 '1 )(z)exp{imaoz + in/oy},

rm=-M n=-N q=O

where VT_,n,_n,q(t) are complex-conjugate to V,n,,q(t) and P(' 1 )(z) are Jacobi's polynomials.
This representation is used for spatial discretization of the problem.

The numerical scheme for time advancement of the Crank-Nicolson type is

(f/3+1 _-jl -Vj+1 + i'AV+ 1 12 +Pf/12,

where Vj+1/2 = 0.5- (f7J+ + V'), pj+1 / 2 = 0.5. (pj+l + pi)

V' = V(jT,x,y,z) and F(V) = (iW)V

are the nonlinear terms of the Navier-Stokes eqns. This implicit scheme is solved by iteration
method.
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'i , 'icrete Shock Waves in Numerical
Solut ions of Hyperbolic Problems

V.V. Rusanov
Keldysh Institute of Applied Mathematics

USSR Academy of Sciences
Moscow, USSR

C'onsider the hylperbolic systciii

(1) I., + F(u)), = 0, u = {= .,,,. 1 ,..., T ,  F(u) = {F,,F 2,...,F,.}T

where vector-fitietrion F(u) is such that the system of equations

(2) F(u) - Du = F(u ( IO) - Du(i)

has for vector u l),Si ItS U = 11(t) one and only one other solution u = v.(2 ) if

Det, {F'(u) - D. E},=,u() , F'(u)= dF, E {6}k=

For (1) we coiisider tle (liflcrclice scheme on a floating grid with steps Ax = h. and At 7,

t; = r/h

" =u r -2 [(,+, (,_h)] + +,/ - 07-_h/2

(:3) ,, = It"(.), 0' 4h/ (,,+,, 1 2 ) (,I ,,,- ,,7) /2

Tj:+hl2 =K, F' (, -h. ) tUr+h/2 (U +,, + ?,,U),

lf't 1-. + mn I) s ;itisfv the Ihig,,tiiot conditions

F(.) -- F(u - ) = D(u + - u - ) , KD = 6

A d uscret e stat.i(miary shock wave DSW is the vector- function Which satisfies the equations:

K.
,,A l, = - - [F (r,+,) - F(v _,)] + O,+,,/2 - -hi/

2
(4) <.+1h/2 =S ('r 4 , /2 ) (!Vr+h - V) /2

,+h/2 = ,K- ("r+h/2)

and the boundary conditioins

(5) lirn v, =u±
r ±-oo
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The problem is to find the function v, and study its properties. In this communication the
solution of this problem is considered for a rational value 6 = p/q and some special vector-
function F(u).

Assuming without loss of generality h = q we fix a certain value of x = xo. Then the points
x1 = x0 + 1 where I is any integer, form a grid, and vz 0+1 are values of a grid function woi(xo)
on this grid. We obtain for wI(xo) the system of an infinite nunber of nonlinear difference
equations:

(6il-)p = Wi - - [F(wi+,) - F(wI-q)] + 01+9/2 -(6)2
01+q/2 = Q (C/q19/2) (Wl+q - wi) /2

If (4) has a continuous solution on the interval (-oo, +oo) then (6) should have an one-paranietcr
family of solutions W1(xo) such that w(x0 + 1) = w+ 1(xo). The existence of the solution of (6)
is proved for the scalar equation (1) and for the monotonic scheme [I]. Numerical experiments
show that in scalar case system (6) has a solution for a nonmonotonic scheme too. In this case
the grid function wl is also nonmonotonic. It proves that for a special function F(w) system
(6) is equivalent to a nonlinear system with a finite number of unknowns and for that system
the direct method of solution may be shown applicable to both monotonic and nonnmonotonic
schemes.

Consider the scalar equation (1) and determine F(w) as

g-'+ f- lu -w-I !-L
F(v)= C(tv) {w - W-I > L A Ito - I > ER)

ig +t + f+ Itw - tW+l I561

where eL, eR are some small numbers.
By assuming the existence of wj satisfying (6) and the boundary conditions at ±oo, we

obtain that there exist 1j, and In such that 1)W - w-! < ej for I < IL, IwI - wi < e1- for I > 1?.

Then for I < 1L - q and I > II + q we have, respectively,

Wl-p = awl+q + b'wj +"4- ,

(7) a ± = (w±- a ±)/2, b:L = 1 - w + , c+ = (w± + U±) / 2

where w+ = Q((±), a ± = K g+ . The sign - stands for 1 < I - q and the sign + for I k in + q.
A general solution of (7) may be written in the form

(8) 1 kk+
k=1

where C are roots of the equations

(9) Cq-P a ±C q + blk q + C±

For the simplicity of prescntation only we suppose that a' t 0 and c' 7 0. Only the C
satiesfying the conditions + < 1, k I > 1 should be included in (8).
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Analysing e(ua tion (9) and applying the Kreiss theorein[2] enlable us to find that there are
exatlyq p Aroots of I + < 1 andl exactly q +f p = K- root s of KI> 1.
Now we c'onIsider t he equations oif systemi (G) for I fromi I1, - q + 1 to III + q - 1, '

call this Set of -#'qua tious the( systeni So. We add to So equations (9) namely time S+ with theC
sign - for 11, - 2qj -[ 1 5 1 - IL 111d thle S- With + for R 1n < III ' + 2q - 1. We obtainm a
systcui S of /it - 11 A- 2 -- 1 equiations foi- the same number of imimknowmms 1?'4+ ,11I"'III -11

A...... .4 + I..+, p - A direct chieck shows that these equlationls are de~p~eet anid
have ai111 olc-me-a aictric s"t of so dutionls, as it Shmoi mid be.

A specific c-harac-ter of thme systecm S allows rather simple algorith mus for its solution providling
high-l accracy. A partilly1% Simplle algorithln iuay lie obtained if q - 1) = 1. In this case there
is only one root.+ mi(I the coefficienmt A+ may be taken as a parameter. By givipg it, we imay
sucrcessively calcullate fromi right to left all by using equationis (6), and then calculate Ak
froml (S).

Ill at general ca-Se thle quantity (v,,, determining 'the middle point' of the profile many be takeni
as a param eter [i1.J A + I + / ) 1 A q qLet tv'(li, 2 ) Zz,(AA q /)(AL\q-W+Iq). Theni a', = a'(-o, oo), A\
1, 2, . .. ,q. It hams becmi provedl [31 that for the stationary solution the (.v,. does not depend oil A.
It is easy to found that

(1)-'~ = E A-T(, q, A) + aA(lL,l11) +± +II+(+ ,A
k k

The solution of systemn S for given a,,, could be found using the following iterative process.
1 ) Let the value of iel at iteration j be tv', 11L - 2q + 1 < 1 < III + 9-q - 1;
2) wj+ for these I is comnputedl using the difference schemne (3);
3) the p)redictedl V ire (determned solving equations (8);
4) the value of coeflicients A+? are corrected using (10) for the given valuec of a,, and sonie

fixed A.

It. c ,mild he shown that, for noim-nionotoii schemie thme solution of (4), (5) is not unique amid
(4), (5) have anl infinite nuniber of solutions. Bult nunmerical1 exp~erimelnt shows that only one of
themi is stable with respect to iterative p~rocess which always conmverge to this solution.

The structure of the DS\V for hyperbolic systemn is much mnore complicated. Inistead of one
c(julationl (9) we have of themn for all characteristics of equationi (1). By ineanis of the modified
Kirciss theorem it is pro~vedi that the full number of roots of (9) is not 2qr but 2q?- - (7, - 1). The
full number of equations in system S is r {lp - 11, + 2q - 1 } and the full number of tinkiownis

me nd(o~f~i1tsA i l n- L+ q-k (r - 1). The missing (7- - 1) parameters arIs(!
from ~ ~ ~ ~ ~ ~~~7 reatv 1hfeemc =~' ,,j 1, . . . , r, which corresp)ond to thme relative shifts of

the profiles for dlifferenit comnponents of w1.
Analysis of the roots C' for hyperbolic systemn shows that for all schemnes (including 'mono-

tonic' ones) the complonents of tv are asymptotically (as x -+ ±oo) non-inonotonic.
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On Nonstationary Shock Wave Generation in Droplet-Vapour Mixtures

Peter Schick and Klaus Hornung

Fakult~t fUr Luft- und Raumfahrttechnik, Universit~t der Bundeswehr

MUnchen, D-8014 Neubiberg, W.-Germany

If a piston is accelerated into a tube filled with gas, shock waves

will be generated. A mixture of droplets and their own vapour will

show the same behaviour, if the fraction of the liquid phase is

small. But when the fraction of the droplets becomes greater, a

significant shock damping may occur.

The process has been investigated numerically by a method of cha-

racteristics, simultaneously taking into account mass- momentum-,

and energy transfer between the phases. The system consists of

seven differential equations, describing the conservation of mass,

nomentum, energy and particle number. The contribution of the drop-

let's volume to the pressure terms is included. The interfacial

pressure forces between the droplets and vapour are considered using

the detailed description of Stuhmiller /l/. By additionally including

particle-particle interaction, the set of equations shows real

eigenvalues in a local linear stability analysis, according to

Ramshaw and Trapp /2/.

The whole description uses dimensionless variables, normalized to

the critical point ahd a generalized fluid model, fitted to a large

class of substances by means of corresponding states arguments. The

results presented here are for H20 with an upstream state of

T o = 293 K, po = 20 mbar.

The piston is driven with a constant acceleration and then remains

at constant velocity. The time of acceleration is 40 ps, which

leads to shock formation times within up tc 100 ys for the example

chosen, which compares to the value for pure gases (Oertel /3/).

As an example, the following figures show results for a final

piston velocity of 1.9 c0 , where c0 ist the velocity of sound

in the upstream vapour phase.
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Fig. 1: .Shock Mach number in deppndence on time for three values
of thle initial vapour mass fraction.
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Fig. 2 Temperature profiles at different times (msec). x= 0 in-

dicates the position of the driving piston (vapour

---droplets).
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Fig. 3: Profiles of the quantity -p s/p, which indicates the

direction of the mass transfer (positve: condensation,

negative: vaporization, p gas pressure, ps: saturation

pressure of the droplets).

Above an initial vapour mass fraction of 0.15, shock wave generation

is not influenced by the liquid phase (Fig.1). Up to about 1OOyjs,

shock wave propagation is the same as in a pure gas. Then the shock

velocity decreases with decreasing vapour mass fraction. As the

velocity of the driving piston is reduced, the shock wave propagation

is influenced at earlier times. The decrease of the shock Mach number

is also known for solid particle-gas mixtures (Sommerfeld /4/). For

larger times, the gas temperature profiles become similar Lo

stationary profiles (Fig. 2). For t = 1 ms, it first rises in the

shock front and then increases smoothly in the relaxation zone due

to the droplet-vapour frictional dissipation. At the piston it is

limited by an isentropic boundary condition. Within the first 20 cm

of the relaxation zone, the droplet temperature rises by condensation

and related release of latent heat. Afterwards it increases by heat

conduction alone (the location of condensation and evaporation regions

is shown in Fig. 3). Fig. 4 shows that the velocity relaxation occurs

in the same region.

274

I .i.



-0.1 0.3 0.6 1.0 MS

S.. , -," .

H20 10t 293.9K MoIK ll900

phi0:0.35 tl.axm :l.009mo

Fig. 4: Velocity profiles at different times ( vapour,

- droplets).

The two-phase shock problem with mass exchange has been treated

previously by Marble /5/ using a stationary approach. His main

results were, that the fastest process behind the shock front is

condensation, followed by droplet acceleration and subsequent

heating by conduction with evaporation being the slowest process.

The present investigation shows that this type of wave is generated

after some time. Furthermore it is an example for the simultaneous

treatment of nonstationary and nonequilibrium processe& in fluids.

/1/ J.I. Stuhmiller, Int. J. Multiphase Flows, 3, 551 (1977).

/2/ J.D. Ramshaw, J.A. Trapp, Nuclear Science and Eng. 66, 93 (1978).

/3/ 11. Oertel, Sto~rohre, Springer (1966).

/4/ M. Sommerfeld, Experiments in Fluids 3, 197 (1985).

/5/ F.E. Marble, Astronautica Acta 14, 585 (1969).
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NONLINEAR RESONANCE PHENOMENA FOR THE

EULER - EQUATIONS COUPLED WITH CHEMICAL REACTION KINETICS

by STEFAN U. SCHOFFEL

Mechanische Verfahrenstechnik und Str6mungsmechanik

Fachbereich Maschinenwesen, Universit~t Kaiserslautern
Postfach 3049, D - 6750 Kaiserslautern, West Germany

Combustion phenomena occurring in jet propulsioni systems,

particularly in closed combustion chambers and afterburners are

known to be associated with self-excited nonlinear oscillations.

A particularly intimate coupling between the heat released by

chemical reactions and the created pressure waves occurs for de-

tonative combustion. The most important dynamic detonation-para-

meter constitutes the cell-size of a detonation limit-cycle. The

detonation cell-size indicates the sensitivity of a reactive mix-

ture to undergo a transition from a high-speed deflagration to a

shock-induced detonation.

It was shown by St. Sch6ffel and F. Ebert in /i/ by compari-

son of characteristic time- and length-scales that a hyperbolic

mathematical model which ignores dissipative transport processes

is appropriate in order to describe the cellular, dynamic detona-

tion structure. The detonation-dynamics may therefore be described

by the gasdynamic EULER - equations together with balance-equations

for the exothermic chemical reaction-kinetics.

In the last few years a wealth of papers were devoted to con-

struction principles of monotonous, non-oscillatory, entropy-satis-

fying numerical methods for solving nonlinear hyperbolic conserva-

Lion laws. One class of this methods are the high-resolution sche-

mes presented first by A. Hlarten, ,hich possess the so-called Total-

Variation-Diminishing (TVD) property. Without additional remedies

the nonlinear flux-limiters of these schemes are usually not able

to prevent instabilities in the linearly degenerated field. There-

fore contact-discontinuities or flame-fronts cannot be resolved ac-

curately. Moreover symmetric TVD - schemes are in contrast to upwind-

oriented methods unstable at flow stagnation points or sonic points.

The development of the cellular detonation-structure from a

steady ZELDOVICH - D6RING - V.NEUMANN equilibrium structure is accor-

ding to /I/ an ill-posed problem, since the transverse wave-structure

does not depend continuously on the initial ZDN - data. K.W. Morton
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R.D. Richtmyer mention in /2/, p.5 9  that any ill-posed

initial-value -,roblem can only be solved by an unstable dif-

ference-scheme, which is consistent with the conservation law.

Fig.1 - 3 shows three-dimonsional pressure distributions and

corresponding contour-plots as computational results of a nu-

merical simulation of a dynamic detonation-process in a shock-

fixed, GALILEI - transformed frame of reference. The numeri-

cal scheme applied is a symmetric two-step LAX - WENDROFF - me-

thod, whose flux is modified in order to achieve the TVD - pro-

perty. This scheme proves to be unstable because of sonic flow

in the Chapman-Jouguet plane at the end of the reaction-zone.

In contrast to all previous numerical studies of the cellular de-

tonation - structure in a laboratory frame of reference the author

of this abstract got a spontaneous development of a transverse

wave-strucure in a shock-oriented coordinate system without per-

turbing the global reaction progress.

The cell-sizes obtained from my numerical calculation compa-

re nicely with the values obtained from soot-tracks in Strehlow's

experiments (see /I/ and /3/ for further reference).

In fig. 1-3 the condition of nonlinear resonance between the

heat-release due to chemical reactions and the transverse pressure-

modes is fulfilled. The number of modes in figure ]-3 is equal to

2.5 for a channel-width of 24 induction-reaction lengths.

In contrast fig.4 shows a more irregular pressur listribution

for a channel-width of 34 induction-reaction lengths. In this case

the mode-number is not unique and changes in the course of a number

of. d2tonation-cycles between mode 4 and mode 4.5. By holding all

system-parameters as constant the author could also show that. for

cortain channel-widths a chaotic pressure distribution developes.

In the latter case no resonance could be obtained.

Conclusions:

Explosion and detonation phenomena can be modelled adequately by

uon-strict hyperbolic conservation laws. The consideration of

reaction-chemistry results in nonlinear source-terms appearing in

the balance-equations. T.-P. LIU mentioned already in /4/ (1982)

that instabilities and resonance-phenomena appear, if the propa-
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gation velocity of the source corresponds with one of the Ei-

gen - values of the JACOBI.M. of an hyperbolic system.

For a dynamic detonation-process the present author applied the

ideas of LIU in order to derive criteria for the occurrence of

nonlinear resonance phenomena.
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Nonlinear Maxwell's equations: global existence of plane waves.

Denis Serre

Laboratoire de Mathematiques

Ecole Normale Sup~rieure de Lyon
46, all~e d'Italie

F-69364 Lyon Cidex 07

Electromagnetism is described by means of four vector fields E, D (electric field and
induction) and B, H (magnetic field and induction). Two universal laws link them, trough partial

differential equations

Bt + curl E = 0, Dt - curl H = 0. (1)

For this system to be closed, one needs a so called state law, consisting on six relations.
These shall depends on the material inside which the phenomena are studied. In the vacuum, these

are B .- oH, D = eoE. Such linear laws are rather general and are usually admitted in the most of

materials. But extreme ranges may involve nonlinear relations, as in ferromagnetic materials, or in
plasma physics.

Colleman and Dill I have given a general settling, which unify the both cases, trough the
equalities

Ej = aW/aDj, Hj = aW/aBj. (2)

The function W(B, D) is the electromagnetic energy density. It is required to be a strictly

convex function, which ensures that the Maxwell's system is of hyperbolic type. Moreover one

recovers the Poynting's theorem, namely the conservation law for energy:

Wt + curl E A H = 0. (3)

Actually, there are some important differences with the usual linear isotropic case. Firstable,

the speed of propagation is no longer unique, nor constant. One cannot speak about the ligth speed.

Secondly, as in gas dynamics or elasticity, shocks may develop even for analytical data. Thus the

nonlinear system of Maxwell's equations lies in a class for which we do not know any global

existence theorem.

Nevertheless, one can study an important simplified problem: the propagation of plane

waves. The fields B and D will depend only on one space variable, and two of then) six

components will vanish. For such solutions, the problem reduces to four one-dimensionnal

conservation laws. Our main result is that for any bounded measurable initial data, there exists a

bounded solution, globaly in time. Actually, it will not satisfy (3), but the entropy inequality

Wt + curl E A H 0. (4)
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This theorem is submitted to fairly reasonnable hypotheses: the energy W is assumed to
depend on r = {B.B + D.D) 1/2, as in the linear isotropic case, and to satisfy some differential
inequalities. Among the convenient state laws, one find the simplest ones:

W(r) = rk, k > 2.
The plan of the proof is as follow. Firstable, the system of four equation splits into a 2x2

system and two transport equations. The first one is solved using positively invariant regions of the
phase plane2 and the compensated compactness theory 3,4 .Each of these both steps needs an
aforementioned differential inequality. Secondly, one write the transport equations as infinite sets
of compatible conservation laws. This allows us to handle bounded measurable coefficients, given
by the previous system. These infinite sets can be solved by a new idea, which unfortunately
cannot be generalized to multidimensionnal transport equation.

The second of our results about the plane waves deals with the propagation of o.cillations.
Actually, the 2x2 sub-system does not allow such a propagation of its components, due :o genuine
nonlinearity, but the transport equations do. Thus, instead of the linear case, the half of the initial
oscillations are killed, and the other half propagate with speeds ± r lW'(r). A fundamental
consequence of this study is that the nonlinear system of plane waves is ill-posed, with respect to
the weak-star topology of L', the one which is involved by oscillatory data.

IB.D.Colleman, E.H.Dill: Z. Angw. Math. Phys. 22, (1971), p 691-702.
2 C.Chuey, D.Conley, J.Smoller: Ind. U. Math. J. 26, (1977), p 373-392.
3L.Tartar: NATO Series C, n'l 11, (1983), J.Ball Ed., Reidel Dordrecht, Holland.
4R.DiPerna: Arch. Rat. Mech. Anal. 82, (1983), p 27-70.
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The Design of Algorithms For Hypersurfaces

Moving with Curvature-Dependent Speed

James Sethian
Department of Mathematics

University of California
Berkeley, California 94720

The need to follow fronts moving with curvature-dependent speed arises in the modeling of a wide class of
physical phenomena, such as crystal growth, flame propagation and secondary oil recovery. In this paper,
we show how to design numerical algorithms to follow a closed, non-intersecting hypersurface propagating
along its normal vector field with curvature-dependent speed. The essential idea is an Eulerian formulation
of the equations of motion into a Hamiton-Jacobi equation with parabolic right-hand side. This is in con-
trast to marker particle methods, which are rely on Lagrangian discretizations of a moving parameterized
front, and suffer from instabilities, excessively small time step requirements, and difficulty in handling
topological changes in the propagating front. In our new Eulerian setting, the numerical algorithms for con-
servation laws of hyperbolic systems may be used to solve for the propagating front. In this form, the
entropy-satisfying algorithms naturally handle singularities in the propagating front, as well as complicated
topological changes such as merging and breaking. We demonstrate the versatility of these new algorithms
by computing the solutions of a wide variety of surface motion problems in two and three dimensions
showing sharpening, breaking and merging.

I. Introduction: Equations of Motion

We wish to follow the evolution of an intial surface -KO) propagating along its gradient field with

speed F(K) a given function of the curvature K (either mean or Gaussian). The key idea, as derived in [5],

is to view the evolving front -Kt) as the level set of a higher-dimensional function $. To be more precise, let

the initial surface (0) be a closed, non-intersecting hypersurface of dimension N-1. We construct the

function * by letting *(i,0) = (l±d) 1eRy where g is the distance from 1 to )(0), with the plus (minus)

sign chosen if 1 is inside (outside) y0). Then, at t--0, the level set {iF I )T(,O) = i} gives 1(0). We now

require a time-dependent differential equation for corresponding to the evc,lution of 7(t). If the family of

level sets #=C, where C is a constant, flow such that each level surface propagates with speed fiven by

F(K), then it can be shown (see [5]), that
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t,=F(K) V# 1

(,) = given

Equation (1) specifies the complete intial value partial differential equation. Note that

1) # is a function in RNx[O,oo)--3R, thus we have added an extra dimension to the problem.

2) At any time t, the position of the front*t) is just the level set{!l , W1) = 1} = t)

Note that Eqn. (i) is an Eulerian formulation of the front propagation problem. Furthermore, the level sur-

face 4=1 may change topology as it moves, either breaking into multiple parts or fusing together. For any

fixed t, slicing * by the level plane at height 1 retrieves the position of the front.

II. Hamilton-Jacobi Equations: The role of curvature as viscosity

To see the effect of curvature on a propagating front, consider a propagating closed curve in R 2 and

special speed function F (K)=I--cK. Using the expression for the mean curvature in terms of t, we substi-

tute into Eqn. (1) to produce

, - It (V*) = El] (,x")Z ] (2)

where H (V4) = (*.+4,2)112. Eqn. (2) is a Hamilton-Jacobi equation with parabolic right-hand-side, which

has a type of "viscosity" solution discussed in [1]. Thus, the role of curvature (EK) is to smooth propagat-

ing fronts so that sharp corners do not develop. In the limit as t--0 (curvature term vanishes and F(K)=1),

corners develop, and a weak solution is obtained from an appropriate entropy condition (see [6,7,8]). Thus

the role of curvature in this Hamilton-Jacobi formulation for propagating fronts is identical to the the role

of viscosity in hyperbolic conservation laws: it inhibits the formation of corners, that is, shocks in the

tangent vector.

III. Numerical Algorithms Based on Hyperbolic Conservation Laws

Our goal is to approximate the solution to the initial value problem given in Eqn. (1). In [5], a class

of non-oscillatory, upwind, entropy-satisfying algorithms of arbitrary order were given to solve this equa-

tion, based in part on ideas in [3,41. The central idea behind these algorithms is to exploit the conservation

form of theses schemes directly into the initial value Hamiton-Jacobi equation. As a motivation to
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understand the scheme, consider the initial value Hamilton-Jacobi equation

W, - F (K)(I+,#1)11 = 0 (3)

where xeR and V/'R x[0,oo)-R. This is a simplified version of Eqn. (1), and applies when the propagating

curve I(0) can be written as a function V(x,t) for all time. Furthermore, in the simple case F(K)=I, we

have

V, - (I+yI2)2 = 0 (4)

Eqn. (4) is a Hamilton-Jacobi equation. If we differentiate with respect to t, and let u =,, we have

u, + [G (u)). = 0 (5)

where G(u)=-(l+u2)" . Eqn. (5) is hyperbolic conservation law which maybe solved by a variety of

methods. The key lies in an adequate numerical flux function 8,+it2 = g (u,-p+, ......... ui.+1) which approxi-

mates the flix G (u). Rather than differentiate the numerical flux function to achieve an approximation to

Eqn. (5), we work directly with Eqn. (4) and write

491+1 = W,&R-gg (6)

A wide class of flux functions are described in [5), leading to a collection of upwind, non-oscillatory,

entropy-satisfying algorithms in several space dimensions for the original Hamilton-Jacobi initial value

problem (Eqn. 1). The upwind nature of these schemes is crucial in the formulation of far-field boundary

conditions. Finally, parabolic right-hand-sides (resulting from the curvature component of F(K)) are

approximated by straight-forward central differences.

IV. Examples

A. Level Curve, Burning out, Development of Corners

We consider a seven-pointed star

= (.1+(.065) sin(7.2xs )(cos(2rs ),sin(2rs))

s: [0,1]

as the initial curve and solve the initial equations with speed function F (K) = I. The computational domain

is a square centered at the origin of side length 1/2. We use 300 mesh points per side and a time step
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At .0005.

At any time nt t, the at Is plotted by paising the discrete grid function to a standard contour plotter

and asking for tho contour $1. The Initial cur corresponds to the boundary ortde shaded region, and the

position of the front at various dmes Is shown in P15. 1. The smooth initial curve develops sharp comers

which then open up as the front burns, asymptotically approaching a circle.

B. Level Curve, Motion Under Curvature

We consider the initial wound spiral

Xs) m (, I( ) - (.-x (:))/2OXco(a (s)), sin(a (s)))
whre a (s) - 25t'(lOy (s)) and

x(s).•(.1 os2iu).1 y(s).(.05sln2i).l ,o 0,1].

and let F(K)--K, corresponding to a front moving in with speed equal to its curvature. It has recently

been shown (see [21), that any non-intersecting curve must collapse smoothly to a circle under this motion.

With Npwt=200 and At-.01, Figure 2 shows the unwrapping of the spiral from t-O to 1-0.65. In Figures

2a-d we show the collapse to a circle and eventual disappearance at 1-.295 (The surface vanishes when

*, < 1 for all 1j.)

C. Level Surface, Torus, F(K) - I-.K

We evolve the toroidal initial surface, described by the set of all points (x y s) satisfying

92 _ (R O)-((zy +) "-R I?

where Row.5 and R 1=.05. This is a torus with main radius .5 and smaller radius .05. The computational

domain is a rectangular parallelpiped with lower left coner (-1,-1,-.8) and upper right corner (l.,1.,.8).

We evolve the surface with F(K) - I-eN, e-.001, At-.01, and Np-90 points per x and y side of the

domain and the correct number In the s direction so that the mesh is uniform. Physically, we might think of

this problem as the boundary of a torus separating products on the inside from reactants outside, with the

burning interface propagating with speed K-I-eN. Here, 9 Is the mean curvature. In Figure 3, we plot the

surface at various times. First, the torus bums smoothly (and reversibly) until the main radius collapses to

zero. At that time (T-0.3), the genus goes from I to 0, characteristics collide, and the entropy condition is

automaticaly invoked. The surface then looks like a sphere with deep inward spikes at the top and bottom.
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These spikes open up as the surface moves, and the surface approaches the asymptotic spheroidal shape.

When the expanding torus hits the boundaries of the computational domain, the level surface r--1 is

clipped by the edges of the box. In the final frame (T-0.8), the edge of the box slices off the top of the

front, revealing the smoothed inward spike.
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Prediction of Dispersive Errors in Numerical Solution of the Euler Equations

Richard A. Shapiro
Computational Fluid Dynamics Laboratory

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

1 Introduction

Any numerical PDE solution method introduces some numerical error. In many cases, this error appears
as dispersion. In the Euler equations for flow of a compressible, inviscid, ideal gas, these dispersive errors
can give rise to undesirable oscillations near discontinuities such as shocks. The purpose of this paper is
to point out some of these errors, examine their origins, and attempt to predict the effect of dispersion on
solution quality.

The analytic work will include analyses of the exact Euler equations, Cell-Vertex method [1], Central
Difference method (finite volume method) 121, and a Galerkin Finite Element method 131.

To demonstrate the predictive ability of the analysis, I show some numerical results for test problems
using the above schemes. The problems include a 1/2 degree compression corner at Mach 2 and a series of
flows over 1/2 degree wedges using the Finite Element method on grids with differing cell aspect ratios and
Mach numbers. In these cases, the flow is linear enough to permit comparison with analytic theory.

2 Analytic Results

This section shows the basic analysis of dispersion, using a method suggested to me by Michael Giles [41.
The 2-D Euler equations can be written:

aU + (AU) a(BU) =I

where A and B are the flux Jacobians. If one linearizes this equation and assumes a steady-state, this can
be written:

(ALse + BLs,)U = 0 (2)

where s, and s, are the z and y derivative operators and AL and BL are 'frozen" flux Jacobians. This
requires that U be an eigenfunction for Eq. (2), because we would like a non-trivial solution. Let

r 82 (3)

8= e (4)
/5,; + s5,

then the characteristic equation is

(ru + 8,03 [c2 (r2 + s2) - (ru + s') 2 ] = 0 (5)

where c is the speed of sound and u and v are velocities in the z and y directions. If we write
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the solution to Eq. 5 is just
0 (6)

Since " has unit norm, the non-sere solution will exist only if the flow is supersonic, that is, when the system
is hyperbolic in space.

Moving now to the discrete domain, assume a state vector of the form

Ui&.,A:, = U'exp i(jO + k8)

where 4 is a scaled wave number in the z direction, 0 is a scaled wave number in the y direction and U' is
some eigenvector. Here, 0 and 0 are scaled into the interval [-w, wj.

To get some idea of the consequences of this relation, I considered a flow in which u = Mc, v << u.
Then, neglecting v, Eq. (6) becomes

1 (7)

This equation holds for the exact Euler equations as well as the discrete appoximations. After some more
algebra, the above relation gives rise to a family of curves relating 4' and 0, parameterised by a similarity
parameter ic = A / M -I, where / = Ay/Ax. Thus, I expect problems with similar values of )c to have
similar dispersive properties for any given method. Figure 2 shows these curves for various methods for

= 1.732 (to correspond with the numerical cases below). The slope of a curve represents a spatial group
velocity, or the angle at which wave packets propagate. Note that for the Central Difference and Finite
Element cases, the curves bend such that one would expect oscillations downstream of a feature, while the
Cell-Vertex predicts oscillations upstream of the feature. Also note that the curves for the Central Difference
and Finite Element methods are multivalued.

3 Numerical Experiments

Figure 1 shows the geometry for the numerical test cases. A test case with inflow Mach number 2 on
a grid with cell aspect ratio I was computed for each method. This corresponds to a value of x = 1.732.
Figure 3 shows the Mach number at mid-channel for a 1/2 degree compression using the three methods.
There are several things to note here. First, the correct spatial frequencies appear at the places predicted
by the dispersion curves above. Note that the oscillations appear on the side of the shock predicted above.
Also note that the Finite Element method has a sharper shock than the other two methods, corresponding
to the fact that, for the Euler equations on a nearly uniform grid, the Finite Element method is fourth order
accurate [5].

Figure 4 shows the Mach number at mid-channel for flow over a 1/2 degree wedge with Ov = 1.732. The
three cases are M = 2, A = 1; M = 1.323, A' = 2; and M = 3.606, A = .5 using the Finite Element
iinethod. The figure shows Mach number normalized by free stream Mach number (so that all the plots fit on
the same axes). Note that the solution shapes are very much alike, even though the shock amplitude varies.
Note especially that le frequency of the post-shock oscillations is identical. This is as expected from the
analysis.

Preliminary experiments indicate that the linear analysis is still useful for predicting the dispersive
behavior for flows over wedges with angles as great as 7-10 degrees.

The final paper will contain a more detailed demonstration of the predictive ability of the linear analysis.
It will demonstrate that the oscillation in the z and y directions are of differing frequency, and that the
frequencies are as predicted by the dispersion curves.
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NUMERICAL PREDICTION OF SHOCK WAVE FOCUSING PHENOMENA

IN AIR WITH EXPERIMENTAL VERIFICATION

by

Martin Sommerfeld

Lehrstuhl fUr Str6mungsmechanik

Universitit Erlangen-NUrnberg

Egerlandstr. 13, D-8520 Erlangen

-------------------------------------------------------------------

INTRODUCTION

In recent years shock wave focusing by means of different types

of concave reflectors has received increasing attention /I - 5/.

The reason for this increasing interest is the use of converging

focusing shock waves for the non invasive treatment of kidney

stones. Recently, a second order extension of Goudunov's method,

called piecewise linear method /6/, was applied to the numerical

prediction of the shock wave focusing process in air /5, 8/ and

water /7/. The numerical results for, water however showed some

problems in predicting the maximum peak pressure in the focal

region /7/; by decreasing the mesh size, it was also seen that

there was still some difference between experiment and calcula-

tion. The experiments for the shock focussing in air conducted by

Nishida et al. /5/ showed a rather low pressure amplification in

the focal region and, therefore, only poor agreement with the

calculations could be obtained for the shock pressure distribu-

tion along the reflector axis.

In order to verify the ability of the piecewise linear method to
predict the shock wave focusing process and the obtained peak

pressure in air, numerical computations were performed and com-

pared with the experiments performed by Sturtevant und Kulkarny

/1/.

292



S

Results of numerical calculation

To prove the grid independence of the numerically calculated peak

pressure, the shock wave focussing process in air was computed

using several different mesh sizes utilizing the boundary condi-

tions of the experiments (Fig. 1).

NY

6mm icident

w hokmesh size peak pressure

Ax/b ratio

geometrical focus 0.01471 0.915
f =6.3mm

0.0098 0.97
0.00735 1.0

1NX Table

Fig. 1: Reflector configuration

Using a rather course mesh, a high peak pressure was obtained,

which increased only slightly by halving the mesh size (see

Table). Due to the limited computer storage, the number of nodes

for the finest mesh was limited to 180 by 150.

For optimizing the number of grid points above the reflector edge

which are necessary (Fig. 1) to guarantee the appropriate predic-

tion of the expansion eminating from this edge, a number of com-

putations were performed and the distribution of the maximum

pressure on the axis of symmetry was compared (Fig. 2). When in-

creasing the number of nodes in y-direction from 75 to 90, no

considerable difference in the pressure distribution is ob-

served.
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Fig. 2: Pressure distribution along the axis of symmetry for

different computational domains

The computations carried out for the purpose of comparison with

the experiments, were finally performed on a mesh of 180 by 150

in the x- and y-direction, respectively. Computational results

agreed reasonably well with experimental ones (Fig. 3).

a o Experiments
5.0- A * Calculotions

C 4.0.
o 0

!

Ms - 1.3

.0.

-10 -a5 s0 @$ 1.0 Kit

Fig. 3: Pressure amplification along the axis of symmetry (the

pressure jump is normalized with the pressure jump of the

reflected shock as it leaves the reflector surface).
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Slightly higher pressures than those found in the experiments are

predicted by the computations in the region behind the focal

area, which may be due to boundary layer effects. Since also the

comparison of the computed wave patterns at different instants

and the pressure history at different locations showed a good

agreement with the shadowgraphs and the measured pressure traces,

it can be concluded, that the piecewise linear method is an

appropriate method for the calculation of the shock focusing

phenomenon, even for weak shock waves.
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FUNDAMENTAL ASPECTS OF NUMERICAL METHODS FOR THE PROPAGATION

OF MULTIDIMENSIONAL NONLINEAR WAVES IN SOLIDS

M. STAAT, 3. BALLMANN

Lehr- und Forschungsgebiet Mechanik of RWTH Aachen,

D-5100 Aachen, FRG

For the solution of hyperbolic problems with more than two

independent variables (two- and three-dimensional wave

propagation) many characteristic-based methods have been

devised. Most of them (e.g. GODUNOV-Type-Methods and

Random-Choice-Methods) use schemes developed for

one-dimensional wave propagation by operator splitting

techniques. May be this is the reason why promising results

are only known for nonlinear media with scalar constitutive

equations so far.

In solids only physically one-dimensional problems can be

modelled by scalar laws, whereaS tensor constitutive

equations describe the material behaviour in

multidimensional problems. Thereby a strong coupling of the

different spatial directions may result and, if the material

is nonlinear, local effects of anisotropy may occur. Such

effects are best known from magnetohydrodynamics and for

optical and mechanical waves in linear anisotropic solids

Ill. Due to the dependence on the solution, the situation is

even more complicated for nonlinear elastic and plastic

waves in solids.

For a numerical treatment of these nonlinear problems,

methods of near-characteristics have been devised, which

become methods of bicharacteristics if the local scheme uses

the axis of symmetry of the local wave fronts of point

disturbances 12,31.

For a uniform treatment of the PDEs in space and time, it is

helpful to introduce a material gradient in space and time

in dyadic notation (quantities in space and time will be
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marked by an asterix *)

* af wih0
.- a 0 with := c ; a=1,2,3 (1)

F, (A=1,2,3) are the spatial coordinates of a material point

in the reference configuration, T is the time and c a chosen
o

speed (arbitrary but constant. to give E the physical

dimension of space). The following notations are used: 9

mass density in the reference configuration, v velocity of a

material point, f density of body forces, E unit tensor, F

deformation gradient, H=F-E material gradient of

displacement (6H=6F their variations), o first

PIOLA-KIRCHHOFF-stress, 0 acoustic tensor, q eigenvector of

6, v solution of characteristic condition (wave speed).

Multiple dots denote multiple transvection.

The local balance of momentum in material formulation is

* * *~ * T -

1 o , 1 : Qc(V v)g - A V H - f. (2)

In addition, SCHWARZ's lemma on the second covariant

derivatives of the displacements holds. If one seperates the

purely spatial derivatives, it reads

* * *- *
L =0 L := (Vv)E -c(V*H)g , (3a)

* 1 kc

(V H) : (gkog 1 g 1 og ) 0 k,1=1,2,3. (3h)

The fourth order elasticity A,

A :: (4a)

can be derived from a stored energy density U for

hyperelastic materials

6F : A : 6F @6 2U (4b)

For materials which are infinitesimally stable in statics

(elliptic BVP of place and traction), the dynamic equations

turn out to be hyperbolic. This results in uindetermined

derivatives in certain normal directions n in space and

time, associated with singular hypersurfaces (so-called

characteristic manifolds). With the ansatz

297

Arl |



S

* V
n -- + n and the arbitrary choice of the spatial unit

C 0,

normal n in a material point, one obtains the appropriate

time-like component v of n from the characteristic

condition
0 1 2 2

0 V det(Q(n) - Qv (n)E) with c = L,T 1 ,T (5)
20o C 12

0
Besides v 0.O one obtains solutions v (n) of (5) from the

eigenvalue problem of the acoustic tensor 0 (n),.

_P(-) -(6
Q~) = 9 o n :A : o n)g og (6

At a given material point the components of A are determined

by the local deformation. There is a''proper eigenvalue at

the point for any choice of n. In three-dimensional space n

has two independent parameters. If one varies these

parameters at the point, the vectors

V
n = n, n = -- + n generate the normal hypercones N , No £ C O C

The according local characteristic hyperplanes envelope the

local MONGE-hypercones Mo . M C. The lines of tangency are

given b'y the bicharacteristics m , m * (generators of M,

M ). The local characteristic hyperplanes represent plane

wave fronts of point disturbances in space.

In the c aracteristic manifolds there hold so-called

compatibility equations. These are linear combinations of

the original PDEs (2) (3a) retaining continuous derivatives

only. Eq. (3a) holds on M and has already the form of a0

compatibility equation. With eq. (5) the compatibility

equations on M are
£

0 = q (n)(v C(n)l - A (n o 1 )). (7)

If (3b) is satisfied in the initial value space, a solution

of the system (2), (3a) is obtained by integration of (7),

(3a) in the domain of dependence, represented analytically

by the backward MONGE-hypercones emanating from the solution

point in space and time and given by
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p °  , m o 1Q - -
M M + o a)

0 E 0 QvE S q (BaC

In the nonlinear case, the H are only local linear

approximations of MONGE-conoids. These may show anisotropy

and torsion in finite time due to inhomogeneous deformation.

The anisotropy may lead to self-intersections of the cones

and to crunodes and cusps on their conics. These phenomena

result in gaps which are called lacunae and lie like islands

in the domain of dependence I11. To take the torsion of H

into account, one has to integrate the POEs

(V n)m (n o n - E) (V v (n)) E (8b)

additionally.

The torsion may be neglected in a second order numerical

scheme for plane problems 131. Based on 12,41 and on the

above analysis a second order method of bicharacteristics

has been developed for acceleration waves in plates 131. It

reproduces the local anisotropy very well and has been

applied to the steepening and focussing of waves. Numerical

results will be shown.

Ill R.G. PAYTON: Elastic Wave Propagation in Transversely
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ON A NONLINEAR TELEGRAPH EQUATION WITH A FREE BOUNDARY.

Ivan Stra~kraba, Praha

In the present contribution we study the followino
problem:For given functions f ,f1,oo,11 to find functions

Q = Q(x,t), = (t), (xs [0,], t [O,T], > 0, T > 6) such

that

(1) Qtt - C2 Qxx + f (Q) t , 0 < x < (t)

(2) Qtt - 20xx + fo(Q) t =  E(t) < x < t (0,T)

(3) Q (E(t)-,t) = Q.(E(t)+,t),x (t - = Q x( (t) + t) ,

Qx(Ot) =Q x(tt) = 0 , t C [O,T] I

(4) Q(xO) = Qo(X) , Qt(xO) = Q (x) , x C [O, ]

1 t(5) (t) = G f Q( (T),T)dT)

0

where c and S are positive constants and

0, y < 0

G(y) = min {,max {O,yj} =-y, 0 < y <

tI y > t.

Motivation for this problem is given in [I1 It is

filling a cylindric compartment with a suspension which

drives out the original content of the pipe (water). In this

engineering problem we seek for a rate of flow Q , a

pressure and a free boundary x = (t) between the

two fluids, x being longitudinal coordinate of the

pipe. Original Euler equations for a barotropic fluid

flow are simplified, the pressure excluded, which gives

rise to the problem (1) - (5) . Here c is the sound

speed which is supposed to be almost the same in both

fluids, f (Q), f ( Q) are the friction terms, QoQ 1  initial

distribution for the rate of flow 0 and its time-derivative

300



S

Qt respectively, S the cross section of the pipe. The form

of the equation (5) is due to the fact that the free boun-

dary x = (t) must not leave the pipe and so it may slip

along x = 0 or x = . The boundary conditions (3) mean

that Q and the pressure are continuous across the free

boundary and the pressure is constant at the ends of the

pipe.

DEFINITION: By a weak soZution of the problem (1) - (5) on

[O,T] we calZ the oouple (Q, )G W2(O,Y)x(O,T))c (0) +1 ([0, Tj)

sa tisfy in g

T Z T [(t)

(6) j J (c 2Qx~x - Qtjt) dxdt + f f() tdxdt +

0 0 0 0

+ f f f 1(Q) t dxdt - f Q 1 (x)i(xO) dx = O

O (t) 0

J'or all, Z .d ( [0,CexOTJ) (x,T) = 0, xE L0,

Let the followinq assumptions be fulfilled:

(i) fo f1  are continuous in R with locally Lipschitz

continuous derivatives f',f;

(ii) there exists an a C R such that

fo(u), f;(u)> a for all uE.R

(iii) there exist nonnegative constants c,d and a

p >1 such that

max (Ifi(u)I,ifi(u)I} < c + djuIp , uE R
i=O ,1 I i T

(iV) 0oE W21 (Olt) , QI(- L2(Ot) .
'~~ 2l 'O10 2at ,'

EXISTENCE THEOREM: ,.ct the f]unctions fo' 0 7,fVJ'

the aosumptions (i) - (iv) . Then there exi.tr .,it loart on", weak
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solution of the problem (1) - (5)

Sketch of the proof: A complete presentation of the proof is

given in [2] and will be published in [3] . We determine

Faedo-Galerkin approximations (Qn,& ) from the equations

n
Qn(x,t). PnQ (.,t)(x) 5 7 q.(t) v(x),

nt) n
f (  q.(t) v (x))

(7) q(t) + Xk q(t) 
+

0jO

n

T j.(t) vj(x) Vk(x) dx +
j=o 0x vk~

n n

+ fl (fq (t) v.(x)) T 4j(t) v vk (x )dx = 0

n (t) 0

k = O,1,...,n, tc [O,T]

(8) qk(O)= f Q0 (x) vk(x)dx , qk(O)=Q 1 (x)vk (x)dx , k = 0,1,...,n,

0 0

t
1n

(t) -G E q.(T) Vj ('),T) dT), tC[O,T];
S j=0 3

n = 0,1,. ..,

where v (x) 1I/ 2  v (x) -2 1 /2 Cos( x),

2 2-2.2
j = 1,2,. x,x C [0,1] , )j. c T I- j

First, we establish the local existence theorem for the integro-

differential system (7) - (9) . Then we derive apriori estimates

rn2 2 n 2]d

(10) sup [Qt(x,t)2 + c Qx (x,t) 2dx <
t,n O
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(11) sup in(t) l < Co

tn

which imply the ulobal existence of a solution (7) - (9)

Further using (10), (11) we show that

(12) sup < C
t 1 t 2 ,n ItI  - t21

From (10) - (12) we get compactness of the senuences

{} n=O {n n=O in sufficiently strong torolooies anO soren=0 0fn n=0

limit functions Q,t . The rest of the argument is a tedious

work with the limiting process in an integral identity which

is a finite dimensional analogue of (6)

REMARK: Although we are not able to prove the unicueness

of the weak solution, it seems that the uniqueness can be

obtained for more regular (strong) solutions, namely for

Q CHII 2) , 0,j). Unfortunately, we are not able to

show the existence of a strong solution. We are going to

solve some of these and related questions in [3]
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"TVD" Schemes for Inhomogeneous Conservation Laws.

P.K. Sweby

Department of Mathemattcs,

Untverstty of Readtng,

England.

Recent years have seen the development of a variety of

high resolution Total Variation Diminishing (TVD) schemes

for hyperbolic conservation laws (see e.g. [1].[2].[3].[4])

as well as the related Essentially Non-Oscillatory (ENO)

schemes (1].[5]. These have all had the aim of producing

solutions giving high resolution to discontinuities whilst

being devoid of the spurious oscillations generated by the

more classical high order schemes, such as Lax-Wendroff. All

of these schemes have mimicked (at least approximately) the

analytic property of solutions to the scalar homogeneous

conservation law that the total variation of the solution is

non-increasing. Extension to systems of conservation laws is

then achieved in the usual way via approximate Riemann

solvers.

The solution of the non-homogeneous equation

ut + f(u)x = b(xt).

however, does not possess the TVD property. Indeed the

presence of the right-hand side will cause the variation of
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the solution to increase since it represents a source term.

Yet we still wish to solve numerically such equations and

desire high resolution oscillation free results. The

question then arises as to how to prevent oscillations from

forming without inhibiting the natural growth of the

solution. Both Roe [6] and Claister [7] have recently

studied the implementation of source terms in schemes for

conservation laws and have advocated upwinding of the

source, however neither have presented high resolution

oscillation free schemes due to the lack of a critereon such

as TVD against which to measure the performance. Priestley

[8] on the otherhand has obtained empirical results which

demonstrates a sucessful implementation of TVD schemes.

We show here how a change of dependent variable

transforms the inhomogeneous conservation law into a

homogeneous equation of the form

vt + a(u)vx = 0

whose solution does possess the TVD property.

This then gives us a tangible critereon with which to

correctly implement high resolution TVD schemes for

inhomogeneous conservation laws. Examples are given using

the family of Flux Limiter Schemes [2] to illustrate the

process both on scalar equations and systems of conservation

laws.
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Purely Convective Carrier Transport In
Semiconductors

Peter Szmolyan
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Balitimore, MD 21228

Carrier transport in semiconductor devices is usually described by the drift-
diffusion model, a system of two convection- diffusion equations for the con-
centrations of positive and negative charged particles (holes, resp. elec-
trones), coupled to Poisson's equation, which determines the electric field.

A singular perturbation analysis, based on a scaled form of the equations,
reveals the complicated structure of solutions, i.e., existence of internal spa-
tial layers of fast variation and temporal evolution on two time scales, a fast
and a slow one (see [I1, t21). The fast tine scale occurs if the initial data do
not have the appropriate spatial layer structure. By rescaling the equations
we show that the transport process on the fast time scale is dominated by
electric field driven convection, i.e., the impact of diffusion is small. The
corresponding initial layer problem has the form

4, = n - p - C(x)

nt = (. )
pt = (PIP.).

subject to appropriate initial values and 'inflow'-boundary conditions for n
and p.

This system describes the flow of electrons and holes in their self-induced
electric field. The function C(x) is the doping profile modelling the concen-
tration of fixed charged particles in the device. Tle equations have been an-
alyzed in [31, where existence and uniqueness of smooth solutions has beeni
proved by the method of characteristics. No shocks occur since the elec-
tric field is a smooth, but nonlocal, functional of the carrier concentrations.
However, discontinuities can originate at the boundary due to 'switching'
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of the boundary conditions for n and p, which cause the breakdown of the
smooth solution.

We interpret the hyperbolic initial layer problem as the limiting system
when diffusion approaches zero. This leads, in a natural way, to an existence
proof of weak solutions by the method of vanishing viscosity. We sketch
the proof, which is based on uniformly valid estimates and a compactness
argument. These results imply the convergence (in suitable topologies) of
solutions or the full singularly perturbed problem with small diffusion to the
solution of the hyperbolic initial layer problem as diffusion approaches zero.
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CONVERGENCE OF THE SPECTRAL VISCOSITY METHOD FOR NONLINEAR CONSERVATION LAWS.

Eitan Tadmor

School of Mathematical Sciences, Tel-Aviv University, and

Institute for Computer Applications in Science and Engineering

I INTRODUCTION. In recent years spectral methods have become one of the

standard tools for the approximate solution of nonlinear conservation laws,

e.g. [3]. It is well known that the spectral methods enjoy high order of

accuracy whenever the underlying solution is smooth. On the other hand, one

of the main disadvantages in using spectral methods for nonlinear conservation

laws, lies in the formation of Gibbs phenomena, once spontaneous shock

discontinuities appear in the solution; the global nature of spectral methods

then pollutes the unstable Gibbs oscillations overall the computational domain

and prevent the convergence of spectral approximation in these casus. One of

the standard techniques to mask the oscillatory behavior of spectral

approximations is based on spectrally accurate post-processing of these

approximations. Indeed, the convergence of such recovery technique can be

justified by linear arguments [1], [5]. However, for nonlinear problems we

show by a series of prototype counterexamples, that spectral solutions with or

without such post-processing techniques, do not converge to the correct

'physically' entropy solutions of the conservation laws. The main reason for

this failure of convergence of spectral methods is explained by their lack of

entropy dissipation.

A similar situation which involves unstable oscillations, is encountered

with finite-difference approximations to nonlinear conservation laws. Here,

the problem of oscillations is usually solved by the so called vanishing

viscosity method. Namely, one adds artificial viscosity, such that on the one

hand it retains the formal accuracy of the basic scheme, while on the other

hand, it is sufficient to stabilize the Gibbs oscillations. The Spectral

Viscosity Method (SVM) proposed in [6] attempts, in an analogous way, to

stabilize the Gibbs oscillations and consequently to guarantee the convergence

of spectral approximations, by augmenting them with proper viscous

modifications.
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2. THE SPECTRAL VISCOSITY METHOD. We consider one-dimensional system of

conservation laws

;u 3(f(u)) (2.1);-t + X =O 21

with prescribed initial data uo(x). We restrict our attention to the periodic

initial-value problem (2.1) which avoids the separate question of boundary

treatment. To solve this 211-periodic problem by spectral methods, we use an

I- trigonometric polynomial

N

un(x,t)= Y- uk(t)eikx,
k=-N

in order to approximate the spectral or psetidospectral Fourier projection PNu

of the exact solution. Starting with Un(X,O)=PNUo(X), the classical Fourier
rmothod lets uN(x,t) evolves at later time according to the approximate model

;uN + (22
T T- [PN(f(uN(xt)))] - 0. (2.2)

We have alrcady noted that the convergence to the entropy solution of (2.1),
Ut--*u may (and in fact, in some cases must) fail. Instead, we propose to

(N . )
replace (2.2) by appending to it a spectrally accurate vanishing viscosity

modification which amounts to
UN . ' 2 [Qm~~) 'N

+ [PN f(uN(x,t))] = E 3 m(X,t)* (2.3)

11rre, Qm(x,t' is a viscosity kernel of the form

Qm (x,t) = Qk(t)e i k x  (2.4)

This kind of spectral viscosity can be efficiently implemented in the Fourier

rather than in the physical space, i.e.,

x Lm t X W 5_ > k Qklt)Uk(t)e (2.5)

It depends on two free parameters: the viscosity amplitude, cLc(N), and the
effective size of the inviscid spectrum, m=m(N). in L6j it was shown that
these two pirameters can be chosen so that we have both, i.e., the spectral

viscosity retains the spectral accuracy of the overall approximation and at

the same time it is sufficient to enforce the correct amount of entropy

dissipation that is missing otherwise (with E=O).
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Entropy dissipation is necessary for convergence; the lack of such

dissipation in the clasqical Fourier methods is the main reason for its

divergence. On the other hand, under appropriate assumptions, one can use

compensated compactness arguments [8] to show that entropy dissipation is

sufficient for convergence.

3. CONVERGENCE. We shall discuss two model problems.

Example 3.1 The scalar case. We consider general nonlinear scalar

conservation laws (2.1). The pseudospectral viscosity method collocated at the

equidistant points x.=---, takes the form

D N k-V-N 2 k
T ufi(xv,t) + [PNf(uN(xvtM + N - k2 uk(t) ei kxV (8.1)2-x N [PfJkxlt)] = N N- -/NIkL="

It can be shown, [7], that the spectral viscosity on the right guarantees

entropy dissipation and the L'-stability of the overall approximation;

cc nsequently convergence follows.

Example 3.2. The isentropic gasdynamics equations

Pt + (PU)x = 0

(Pu)t + (Pu 2  + p(p))x = 0 (4.1)

for, a polytropic gas p=Const.p Y, Y>1 are approximated in a similar fashion.

Uridr appropriate L®-stability assumption (in particular, a uniform bound from

the vacuum state), it can be shown [3], [7] that the spectral viscosity

solution converges.

Finally we will present numerical examples which demonstrate the utility of

the method and extensions to nonperiodic problems will be described.
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THE RIEMANN PROBLEM WITH UMBILIC LINES

FOR PLANE WAVES IN ISOTROPIC ELASTIC SOLIDS

by

T. C. T. Ting
Department of Civil Engineering, Mechanics and Metallurgy

University of Illinois at Chicago
Box 4348, Chicago, IL 60680 (U. S. A.)

The governing equations for plane waves in isotropic elastic

solids are a system of hyperbolic conservation laws and can be written as

Ux - F(U)t 20 1

in which U is a 6-vector, three of which are the velocity components

and the other three are the stress components on the surface x = constant.

F is a given function of U but it depends on the stress components only,

not on the velocity components. The characteristic wave speeds c of (1)

are ± ci , i = 1, 2, 3, with

c > c2  c3  (2)

it is shown in [1,2] that c2 is linearly degenerate. The simple wave

associated with c 2 is therefore a shock wave. Thus, it is sufficient

for the Riemann problem to consider wave curves associated with cI and

c 3 only.

For hyperelastic materials for which the stress-strain laws are deri-

vable from a potential (the strain energy) W, one can express W in terms of

a and T which are, respectively, the normal stress and the resultant
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shear stress on the surface x - constant. Since W is invariant with

respect to the change of sign in T, W is a function of a and T . For

the second order materials W has the expression

a 2 + T2 +k 0  + e 2

W-2 2 T , (3)

in which a, d, b, e are the material constants. The longitudinal strain

and the shear strain y are

2W 1 (b2 eT2)

(4)

y =-= T(d + eCY)

We see that b and e are the second order constants.

With W given by (3), there exists one umbilic point at which

c, M c3

The umbilic point is located at

CJ =d a a 0
b -e '

The system therefore is not totally hyperbolic (or strictly hyperbolic).

For thk modified Riemann problem in which a constant stress state

is prescribed for t = 0 and x > 0 (the initial condition) and a

different constant stress state is prescribed for x = 0 and t > 0

(the boundary condition), the solution consists of wave fans each of which

can be a simple wave, a shock wave, or a composite wave in which a shock

wave is in contact with a simple wave [3 - 6]. The complete solutions for

the strain energy given by (3) for arbitrary initiel and boundary conditions

have been presented in [2]. Many interesting and unexpected phenomena are

314I



T

discovered due to the existence of the umbilic point. The same phenomena

have also been discovered by Shaeffer and his co-workers [7,8,9] who con-

sider a prototype 2x2- sy Lew of non-strictly hyperbolic conservation laws.

If the stresses are not small, the third order terms in the stress-

strain laws must be included. The strain energy W then has the expression

a 2 d 2 b +3 e 2 -2 0W = 2 o +j + + O T 6 2 0 0

S 4 +1 4 1 22+ Eio4+-E2 4 +--Cot + , (5)
12 1 12 2 43

in which El. £29 E3  and E are the third order material constants and P o

00 are the mass density and the initial temperature. C is the entropy

which can no longer be ignored because entropy jump is of the third order

in the discontinuity of the strain [101, and hence of the stress. Depend-

ing on the material constants, there may be up to three umbilic points at

which c, = c3. What is more interesting is that one may have an umbilic

line along which c1 = c3. This is the main subject we will address in

this paper.

We will show that there may be one or two umbilic lines. The umbilic

line may be a curve. The wave curves, which provide the solution to the

modified Riemann problem, will be presented for the system with umbilic

lines. As in [2], a shock wave may satisfy the Lax stability conditions

for both cI wave fan and c3 wave fan. On the other hand, a shock may not

satisfy the Lax stability conditions for either the c1 wave fan or the c 3

wave fan. Moreover, since the wave speed has more than one extremum along

the wave curve, the Lax stability conditions are not sufficient. A more

discriminating condition proposed by Liu [11] will be required.
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Random-Choice Based Hybrid Methods for

One and Two Dimensional Gas Dynamics

E F Toro

Department of Aerodynamics, Cranfield Institute of Technology,

Cranfield, MK43 OAL, England

Our theme is numerical solution of the unsteady Euler equations in one

and two space dimensions with particular emphasis on the accurate representation

of solutions containing strong discontinuities such as shocks and contacts.

There are several modern numerical methods that are accurate in the smooth parts

of the flow, but discontinuities are smeared. Typically, shocks are spread

over two to three zones, but contacts are more difficult to handle and are

typically spread over five to six zones. In the gas dynamics associated

with combustion phenomena the representation of contacts is very important;

they carry discontinuities in temperature on which ignition criteria are

based.

The Random Choice Method [1] (RCM), on the other hand, gives zero-

width discontinuities but smooth parts of the flow are affected by

randomness, which is a feature of the method. In Ref. [2] we presented a

hybrid method that combines SORF, a new second order random flux method [3],

and RCM. SORF is applied everywhere except at large discontinuities where RCM

acts. The performance of this hybrid (SORFRCM) for one-dimensional problems

is excellent. Fig. I shows results for density and pressure for the Sod's

shocK tube problem; full lines show the exact solution and symbols show tile

numerical solution. Here we present some further refinements of SORFRCM concerning

three aspects, namely (a) switching mechanisms, (b) monotonicity of the 'smooth

component' and (c) extension to multidimensional problems.

Extension of Riemann-problem based methods is normally accomplished

by space operator splitting (SOS). Roe [4] has shown that SOS is incorrect

under discontinuous data, for certain waves. Here, however we insist in

extending the hybrid methods to multi-dimensional problems via SOS. Shock

waves must be compromised, that is they must be handled by the smooth

component of the hybrid, which must therefore be reasonably accurate for this

type of wave. Contact discontinuities however, are cleanly captured. This is

i
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an advantage of the hybrid method over high resolution methods under SOS.

Fig. 2 shows results for Sod's shock tube problem with initial data at an

angle of 45 degrees to the 2D grid using SORFRCM. Note that there are

some small spurious oscillations present; their origin is a start up error.

They reveal that we have not yet completely resolved the monotonicity

aspect of SORF.

THe second hybrid method (ROERCM) we consider consist of Roe's method

[5] and RCM. The advantage of this combination is that the smooth component

(Roe) is well understood and developed. Figs. 3 and 4 show the counterparts

of Figs. 1 and 2 using the ROERCM Hybrid.
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Fig. I Shock-tube problem in 1-1) solved by the SORFRCM hybrid.
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Fig. 2 Shock-tube problem in 2-D solved by the SORFRCM hybrid.
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lligher-Order Godunov Methods ror Compositional Reservoir
Simulation

John A. Trangenstein
John B. Bell

Lawrence Livcrnorc National Laboratory
P.O. Box 808

Livermorc, California 94550

Simulation of enhanced oil recovery techniques, particularly miscible gas injection, requires
numerical models that account for a variety of physical phenomena. Naturally-occuring hydro-
carbon fluids are mixtures of a large number of different chemicals, which have widely varying
behavior due to changes in pressure, volume and temperature. These hydrocarbons associate to
form distinct homogeneous fluids, called phases, in such a way that the Gibbs free energy of the
mixture is minimized. As pressure is varied, the concentrations of the hydrocarbon components
in the phases varies, even to the point that new phases form or existing phases vanish.

The compositional model of phase behavior is the most successful of all reservoir simula-
tion models in predicting the thermodynamic properties of the reservoir fluids. The basis of this
model is a collection of mathematical expressions for the chemical potentials ror each component
in each phase of the reservoir fluid. Thermodynamic equilibrium is described as a constrained
minimization of the Gibbs free energy of the total fluid, subject to constraints rcprescniling nonne-
gaiivity of the phase compositions and conservation of mass. Because of the representation of the
phase behavior in temis of this constrained minimization problem, the resulting system of flow
equations is very complicated. The purpose of this talk is to describe the mathematical structure
of the flow equations, and to present robust numerical procedures for their solution.

The fluid flow equations consist of component conservation equations, Darcy's law for the
volumetric flow rates, balance between the fluid volume and the rock void, and the conditions of
thermodynamic equilibrium that detennine the distribution of the chemical components into
phases. We manipulate the flow equations to form a pressure equation and a modified component
conservation equation; these form the basis for our sequential method. We show that the presure
equation is parabolic under reasonable assumptions on the thermodynamic equilibrium model,
and that the component conservation equations are hyperbolic in the absence of diffusive forces
such as capillary pressure and mixing. (We include other important physical effects, such as
interfacial tension.) Our numerical method uses a sequential approach, in which the parabolic
pressure equation is solved by taking the chemical compositions to be known functions of space,
independent of pressure; afterward, the hyperbolic component conservation equations are solved
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by taking the pressure and total fluid velocity to be known functions of space, independent of
chemical compositions.

The characteristic structure of the component conservation equations is very interesting.
There are always at least as many chemical components as there are phases (at least for these
reservoir simulation problems), and there are as many characteristic families as there are chemi-
cal components. The characteristic analysis shows that if n phases exist, then there are n - I
strongly nonlinear waves with local linear degeneracies (i.e., the the characteristic speeds reach
local extrema along the corresponding rarefaction curves). The remaining characteristic speeds
are weakly nonlinear, and (relative to the strongly nonlinear waves) behave as if they were
linearly degenerate. The hyperbolic system is not strictly hyperbolic, since the various wave
speeds can coalesce with a corresponding cigenvcctor deficiency of the linearized coefficient
matrix. Furthermore, in multiple-contact miscible gas injection, the recovery process is designed
to drive the fluid composition toward the critical poinkE.where all of the characteristic speeds can
become equal and linearly degenerate. These problems are especially difficult to solve numeri-
cally, since they are subject to smearing of the linearly degenerate multiple-contact miscible front
due to the numerical diffusion in the differencing scheme for the conservation law.

We have used three basic numerical techniques in our numerical method for compositional
reservoir simulation. A customized Newton iteration with appropriate adaptive changes of vari-
ables is used to solve the thermodynamic equilibrium equations. This view of phase equilibrium

is designed to provide the characteristic structure of the component conservation equations as a
direct consequence; in fact, the variable changes in the Newton iteration correspond to deflation
techniques for the algebraic eigenvalue problem to find the characteristic speeds. The parabolic
pressure equation is solved by a particular implementation of the lowcst-order mixed finite elc-
ment method. The component conservation equations are solved by a higher-order Godunov pro-
cedure.

Our"umerical examples are concerned with the modeling of one-dimensional miscible gas
injection in a slim tube. This apparatus effectively climinates gravitafional effects; as a result, all
characteristic speeds have the same sign and the Ricmann problems required by the Godunov
procedure are trivially solved by the upstream state. For the simulation of multi-dimensional
petroleum reservoir flow, the Riemann problems could be solved approximately by techniques
due to Bell, Colella and Trangenstein.
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GRID CHARACTERISTIC METHODS FOR HYPERBOLIC PROBLEMS

L.I.Turchak, A.S.Kholodov

U.S.S.R. Academy of Sciences Computing Centre

40 Vavilov Str.,117333 Moscow

A method of difference schemes constructing for multidimensi-

onal quasilinear equations of hyperbolic type as well as the hyper-

bolic part of more complicated equations is developed. It is based

on a successive transition from the simplest one-dimensional tran-

sport equation to a system of linear,and then quasilinear,one-dime-

nsional hyperbolic equations followed by multidimensional ones.

The approach involves an introduction of linear spaces of dif-

ference schemes coefficients and characteristic properties of hy-

perbolic equations systems using. This allows:

i) to construct the entire set of schemes with positive app-

roximation(monotonic or majorant schemes) for arbitrary grid models;

(ii) to prove in general there are no schmes with the second

or higher order of approximation on the solutions of the original

equations;

(iii) to find the most accurate scheme among monotonic schemes

for each grid model and,conversely,to find among second- and higher-

order nonmonotonic schemes the one that is the least oscillating at

the discontinuities of the solution;

(iiii)to construct the analogues of all these schemes for a

quite general case of linear systems of hyperbolic equations.

GC methods present a wide range of computational algorithms

with different properties. These algorithms include explicit and

implicit schemes with the first- or higher-order approximations,

conservative and hybrid schemes, etc.

Some of the schemes were used for the numerical modeling of

many hyperbolic problems: steady and unsteady supersonic flows,

plasma physics and mechanics of a deformable body. The results ob-

tained show the effectiveness of the GC methods in solving problems

with a complicated structure of the required solution.
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Fully Implicit High-Resolution Scheme

for Compressible Chemically Reacting Flows

Y. Wada*, H. Kubota**, T. Ishiguro* and S. Ogawa*

* National Aerospace Laboratory

** University of Tokyo

The eigenvalues and eigenvectors are analytically derived for convective

terms of general real gas dynamics equations in generalized curvilinear

coordinate. This general gas-dynamic equations can include arbitrary non-

equilibrium effecs, i.e. chemical reactions or vibrational non-equilibrium

etc.

This diagonalization has the following favorable properties

1. Total mass conservation equation is included.

2. Chemical reaction and vibrational non-equilibrium can be treated in

the same manner.

3. Matrix multiplifications are so simple, that the increase in number

of additional non-equilibrium equations does not drastically increase

the operation counts.

4. This is a natural extention of Warming & Beam's perfect gas-dynamic

matrices diagonalization[l], which is included for a special case in

our formulation.

Yee and Shinn[2] derived another diagonalizing formulation, but their

basic equations do not include the total mass consevation equation, and

consequently the total mass is not conserved especially when chemical

source terms are treated implicitly. Park[3] suggests that every species

equation and the total mass conservation equation should be solved at the

same time for the flows in which dominant species do not exist.

The above defects can be overcom in our formulation, which opens the

way for general real gas-dynamic equations to the construction of finite

difference schemes based on characteristic relations such as TVD schems or

the simplification of the solution of block-tridiagonal systems that arise

in implicit time-split algorithm such as LU-ADI time integration.
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In this paper, we sirr .late the chemically reacting viscous flows through

SCRAM-Jet engine, by the use of TVD scheme[4] in space discretization and

Point-Alternative-Direction Implicit (Approximate Factorization) method in

timn integration, in both of which our diagonalizing formulation is used.

The result shows the efficiency , robustness and high resolution of our

scheme.
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Two-dimensional calculation:

-inflow condition p =1 atm
T = 1000 K
M= 4

mass fraction YH 20 = 0.027

y0= 0.022 we use Roger's

y H=0.001 Global Hydrocqen -Air

Combustion Model
YH0 = 0.0

yN = 0.75

-result

RHO
FMRX= 0. 434E+01
FMIN= 0.458E+00
FW= 0.384E-01

FMAX= 0. 345E+01
FMIN= 0.8~18E+00
FW= 0.260E-01.!I7

H20
FMRIX= 0. 191E+00
FM[N= 0.OOOEO00
FW= 0.190E-02
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'Three-dimensionial calculation:

- inflow conditicn: the same as 2-dimensional calculation

-results (contours of I Y~ H0

above figure: on side wall
below figure: on symmetric surface

'-now
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THE EXISTENCE AND BEHAVIOR OF VISCOUS STRUCTURE FOR
PLANE DETONATION WAVES

David H. Wagner1

Department of Mathematics
University of Houston
Houston, TX 77004

Detonation waves are compressive, exothermically reacting shock waves. One of the

curiosities of combustion theor is that there also exist expansive "shock waves" known as

deflagration waves, which will not be discussed in this paper. We will give a mathematically

rigorous, but simple, discussion of the viscous structure of plane detonation waves.

In the inviscid theory, known as the Chapman-Jouguet theory, we assume that the

thickness of the reaction zone is zero, we neglect all diffusion effects such as viscosity, heat

conduction, and diffusion of species, and any external forces such as gravity, and we look for

steady plane waves. This yields the following system of differential equations:
(1.1) (a) (pu)x = 0,

(b) [pu2 + p(p, T)] x = 0,

(c) [[p[u2/2 + e(p, T, Y)I + p(p,T)]u]x = 0,

(d) (puY) x = - puY- 8(x-x 0 ).
Here x is a space coordinate in the direction normal to the wave, x0 is the location of the wave,

and p, T, u, p, e, and Y are the mass density, temperature, x-component of velocity, pressure,

specific internal energy, and mass fraction of the reactant, respectively. As is standard practice, we

have represented the extremely complicated chemical reaction by a simplified, one-step chemistry:
reactant - product. From (l.la) we see that the mass flux, pu, has a constant value; we denote

this value by m. The fluxes of momentum, (1.1b), and energy, (l.1c) are also constant; from this

fact we obtain the Rankine-Hugoniot conditions for a shock wave. The difference between inert

gas dynamics and the exothermic reactive theory discussed here lies in the fact that Y varies from

a positive value on the unburned side of the wave, which we take to lie on the right side, to a zero
value on the burned, or left side. Because the internal energy (- depends on Y, the change in. Y

causes the classical Hugoniot curve (the solution locus of (1.lc)) of gas dynamics to move. As a

lResearch supported by NSF Grant #DMS-8601917 and AFOSR Grant # AFOSR 86-0218
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consequence, we find that, for a given value of m, a given shock state on the left may now be
connected by a shock wave to two possible states on the right, except for certain critical values of
rn for which there is a unique burned state -- the Chapman Jouguetpoint. In addition, the curve of

possible burned states, parameterized by m, has two components. One component,

corresponding to compressive waves, is called the detonation branch, and the other component,

corresponding to expansive waves, is called the deflagration branch. By way of contrast, in an

inert gas, for a given value of m, a state is usually connected to only one state on the right, and the

curve of possible terminal shock states is usually connected.
The reacting shock waves of the CJ theory are classified as follows. A wave connecting

the unburned state to the closer detonation point is called a weak detonation wave, and a

connection to the farther deLonation point is called a strong detonation. A detonation wave

terminating at the Chapman Jouguet point is called a Chapman Jouguet detonation. Deflagration

waves are similarly classified.

The CJ theory for detonation waves is useful for deriving the Rankine Itugoniot

conditions, and for classifying the types of wave. However, this theory is physically flawed,

because in reality the reaction zone is much thicker than the shock layer. Thfis is due to the fact that

the chemical reaction depends on molecular collisions, and requires a distance much longer than the

tnean free path to achieve significant completion. The shock layer, however, has bcen

experimentally observed to be several mean free paths thick. Consequently the appropriate inviscid

model is the one developed independently by Zel'dovich, von Neumann, and [Xiring, and which is
known as the ZND model. In this model equation (1.ld) is replaced by a similar equation, but

with a fihite reaction rate:

(I. I d') (puY)x = -KpY €(T)

For our purposes it is reasonable to assume that the reaction rate function 0 is continuous,
non-negative, and monotone. Our mathematical treatment will require that we assume that 0

vanishes whenever the temperature T is less than a given ignition temperature Ti.For a known

reaction rate 0 one can solve (1.1a, b, c, d') explicitly; the only detonation wave solutions are

strong or CJ detonations. These waves, which are known as ZND waves, begin with a jump

discontinuity which is an inert shock wave. This shock wave heats the gas above the ignition

temperature; the reaction proceeds, with the velocity and temperature following a curve of

equilibrium states for (1 lb, c), parameterized by Y. One of the interesting features of these

waves is the peak in the temperature and pressure which is known as the von Neuanazn spike. By

way of contrast, in inert shock waves these variables are usually monotone.

One of the purposes of this paper is to examine the structural stability of ZND waves. A
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shock wave is structurally stable if it is the limit of solutions to models which include more

physical effects, such as viscosity and heat conduction, as these models tend to the original

inviscid model in which these effects are neglected. For steady plane detonation waves one may

consider the effects of viscosity, heat conduction, and species diffusion, to obtain the (steady)

reacting compressible Navier Stokes equations:

(1.2) (a) (pu) x = 0,

(b) [pu2 + p(p, T)]x = (.tUx) x ,

(c) [[P[u2/2 + e(p, T, Y)] + p(p, T)]U]x = (XTx) x + (tuux)x + (qpDYx)x,

(d) (puY) x = (pDYx) x - KpY M(T).

Here l. is the coefficient of bulk viscosity, . is the heat conductivity, D is the diffusion rate for

the reactant, and q is the difference in the heats of formation of the reactant and the product [Wil.

In this paper we prove a necessary condition and a sufficient condition for the existence of

heteroclinic solutions of (1.2) which connect an unburned state to the strong detonation point.

These conditions also apply to the Chapman Jouguet detonation. See (5.3) and (6.3). For

simplicity we restrict our attention to the case where the Prandil number is 3/4 (p = X/c p). In the

limit as X, gt, and D tend to zero (with other parameters fixed) these solutions tend to the ZND

wave. Thus the ZND wave is structurally stable to this particular perturbation of the model.

For all of these solutions the stagnation enthalpy H = c T + u2 /2 is monotone, as is theP

entropy flux: nS - XT x/T. For most of the strong detonation waves the temperature and the

pressure attain their maxima in the interior of the wave; this corresponds to the von Neumann spike

which occurs in the ZND wave. However for a certain paranicter range, characterized by large

values of te diffusion coeflicient X, there exists a continuum of solutions which look like a weak

detonation followed by a gas dynamic shock wave. For these waves the pressure and temperature

are monotone. This pathological behavior has been noted before in numerical conputations of

solutions of (1.2), and rigorously for a qualitative model [CMRJ. In these numerical computations

it was observed that the weak detonation - shock wave solutions are dynamically stable as

solutions of the time dependent reacting compressible Navier Stokes equations in one space

dimension.
Let A* = inf( VpDc P, 1), and A* = sup( JpDc p, 1). For any state variable U let

U+ be the limit of U at ±00. Then a necessary condition for the existence of a strong detonation

structure profile is:
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(5.3)m 2V ~ 2XA*K
(5.3) (1 - )(T_ + qYT/c ) dt

A sufficient condition is:

(6.3) Y > E. + -2y cp XA*(T* -TO()d1']2
1Y- )m2q2V f )~T

It is inteiesting to compare these conditions to the correspondig conditions for existence of a
plane premixed laminar flame [BNS, WgJ.
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A New Class of ENO Schemes for Hyperbolic Conservation Laws

Zliong-De 'Wang
Department of Mathematics and Mechanics

Nanjing Aeronautical Institute
N-atjing, China

III t his paper Nve p~resent a cond~it ion t hat at general 3-point. amid 5-point fliite-differciice
schemne inl conservattion form is ENO. Byv using the UN02 miunerical flux introdulced iii
(1), we obtain the conidi tion thait the (liffereilce schemes inl coniservat ion formt is uniifornmly
Se( iold-order acura te. AXe th en convert, kn own 3-point scliciiies inito new 5-poinlt schlies by
aipplying lar-teil's trick inl (2). Accordingly, ai new class of uniiformtly secoli(l-order accuirate
ENO) schemies htas bel'ii constructed. Ninierical experinment is p~resenited t~o dell lolls trateC the
per~fortivincc of these njew~ ENO schemues. The result is encouraging.

1. 1IntrodIuction. III this Iniper we consider the numerical. solut ions to the hyplerbolic coil-
servation laws

(11)11 I +P").' = 0, u.(x, 0) =uIo(x), t > 0, x E IR.

IA't 1'' = I'h, ( .t'j b , t" ?IT , denot-e ai mitiierjcal ;i p)oivi at i( iii ct )iv16Vi~oi

(1.2) V- j 12-.j-1/ E,(

JBecimtly, A.1hrt en k S. Oslher have dlevl loped Esscntmilly Noijoscihla hwoy (EN ()) shock cap-
tirling niethAods for the ahlh)INximition of (1.1) (sec(3), (4)). ENO) schemes satisfv

(1.3) TlV(E,,(T) -' 0<: TV(v) + 0(fi1 )

for 11 sufficient ly shut 1. Wheire it,(x) are piecewvise smloodh. I- is thle order of a1cci lncy of
(1.2). These SChteies overcometi the sin rt c nitig --- TVD schielitms hiave ;t ii inst fiist-order
a ccliracv inl the selise of t rumca tioii err(or, at extreina o f the sohtitioti , 'l111d aIvoid a Gii ii-
like phei ( noenon -,t dlisco ntinuities. III this ip r' we (lescrih 1 . iii wed tue to obl i thle
in i f orily second-order a-c nte ENO) sch ettes 1) ynodi [viiig kn own~ TVI) sci ettes. The
forait of this paper is as follows: III sclionl 2, we 1n('scut a.slifhhiietut cotltln itt that scijelic
(1.2) is ENO; ini sectioni 3, wve give the condt~it ion that. schen ie ( 1.2) Is tiitil'Ormit sec( ndl-( i.t
acurat e, a1nd proipo se a1 new clss if tutniformt ly scconid-order accurtnt e ENO )scel is; ill

sec:tion 4, miunerica il examtple is included to JilluIstrate the schem tes iii section 3.

2. Tie condition for the construction or ENO sclw Ines.
Suppose bothI the 3-poit tatid 5-poiit, sci etncs (1.2) ci 1be icWri tten ill thle forinl

(2.1a) W1' Eh () 7 ",

(2.l1b) (Eh (7) V), Vj 4 C'+,j+ I 2 L-\.~ 1 ) -jI/2'-1/2
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Where

(2.1c) C+,+ 1 2 = C+(,,j-it,,+1 ,' 2), C-,/., 2  C-(p'.2,,',,+,)

The following thcorciu states a condition that scheme (1.2) is ENO.
Theoren 2.1. Let the coefficients C± in (2.1c) satisfy the condition

(2.2a) C.J+1/2 = C+ + ,(1h/)
(2.2b) +',j+1/2 = C 1=-C,j+I/2 <

then TV(Eh(T). v) < TV(v) + 0(hr), i.e., scheme (2.1) is ENO.

Her x+ = ( -xi +x)/2.
Exanule 2.2. For the UNO2 scheme prcselitcd by 1-larteu (see (1)), we CaeI Casily sho0w thilt
it satisfies (2.2.)

3. Uniformnly second-order accurate ENO schemes
Let us co, sidcr a general 3-point schene (1.2) with a numerical flux of the for,,m

(3.1a) Jj+1/ 2  (f(j) + .("j+I)- I Q(j+/2)Aj+ /20

\i herr'

(3.1b) 1j+1/2 '\j+/2

, /22 , Aj+

I ct( vs ), A j+ 1 [2'1

Leninia 3.1. If Q(.,') in (3.1a) satisfy

(3.2a,) Q(x) T 1 - (() T X) = o(h")

(3.2h) IQ(:x) - xj + (2(.) + x1 + 2Q(x) < .

for IxI < ,1L + 0(h), then schcme (1.2) witi (3.1) is ENO untdlr thle C'FL restriction

(3.3) A max Ij+,/, I < p 4 0(h) (0 < p < 1)

A.Itlartcii & S.Osher have prop>osed the UNO2 scheme (1.2) with ia tittit erical flux of the

formt

•. 1/2 =,5(j'j) --. f(j+l) - I.j+u/21(1'i+l - rI)

(3.4a) + max(0, (I- 1/2 )(1 - 1j_ 1/2) "j

- ufin(0,aj+l/2)(1 + i"j+3/2)" S+1)

where

(3.4b) S - S 1 /(1 + l'j+1/2 - lj-1/2)
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By using the UNO2 numerical flux, we obtain the following conditien that scheme (1.2) is
uniformly second-order acc, irte.
Lemmia 3.2. Let the numerical flux fj+1 2 in (1.2) satisfy

(3.5) - 0(h 2 )

then scheme (1.2) is uniformly second-order accurate.
We convert 3-point scheme (3.1) into 5-point scheme as follows:

(3.6a) ^"' I I-

( j+)/2 = _(f(V) + f(v~i+)) + _(gj + g.+i - Q(v,+ 112 + y1 ±+1/2)A 1+,/2V)
(3.6b) gj = g(vj-l , vj, vi+ ), -tj+/2 = (9j+1 -. gi)/Aj+/2 v

Lemma 3.3. Suppose Q(x) is Lipschitz continuous and gj satisfies

(3.7a) gj +9j+, =(Q(Vj+11 2) - jvj+1/21 +.ax(O,vj+i/ 2 ) (1 - V_,/2 S
Aj+l/2v

- min(0,vi+1/2).(l + i+32Sj+2) Aj+ 1/2 v+ 0(h 2 )

(3.7b) 7j+1/2 "Ai+l/2V = 9j+1 -g, = 0(h2)

then the numerical flux of (3.6) satisfies (3.5).
We construct gj = 9("j-i, vj, v+,) that satisfies (3.7) in the following way:

(3.Sa) 9 = ,(%+I/2,jj-I/2)

i+ 1 /2 (Q ( j+ /2) - I 'j+ 1/21 + llax(O, Vj+ /2) " (1 - 1 j _/2) - + "

(3.Sb)

- mii(O, Vj+1/ 2 ) (1 + j+3/2) j2) Aj+/.2v

(3.8c) 7(z, ) = -. smin(Ixi, M), sgn(x) = sgn(y) =s
( )0, otherwise

Lemma 3.4. Let gj be defined by (3.8). Suppose

(3.9) Si = h d(hx,) + 0(h3 )
dx

then relations (3.7) is satisfied, and

I1 7j+1/2 I=j+t - 9j ILA,+I/1

< -IQ (,3  /2 ) - 1ij+1/21 + max(O, Vj+ /2). (I - , I/ ) .s
(3.10) -2 Aj+ 12v

- min(O, vj+1/2) (1 + 1/+3/2) 1
A+/2V
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Leiina. 3.5. Sul)l)ose ((.r) satisfies (3.2), SJ satisfies (3.9) and f/j is defined Iby (3.8); then
sch,,ne (1.2) with numerical flux (3.6) is ENO under CFL restriction: A inaxj 1"j+ 1121 < P

As a synlthesis Of albOVC results, we have
Theorem 3.6. Let us assume that Q(.7) satisfies (3.2), S2 satisfi's (3.9) and .q is defined by

(3.8), then finite-difference scheme (1.2) with numerical flux (3.6) is unif)rimly second-order

accurate ENO.

4. Numerical Examlles. Cousider a RiauumI problem for the Etiler equations of gas

(lynamics

(4.1 a) ?. f( ) = it, u(., 0) u L x <
uR, x > 0

(4.1b) U. (p, ,7, E), .f(,,) = (m, ,,,2/p +P, ni(E+ P)/t),

(4.1c) P (3' - 1)(E -

Here p, in, E aud P are the density, umomentim, total energy, and pressure, we take -y = 1.4.

WVe extend the new uniformly second-order accurate ENO schi'me (1.2) with mmmrical flux
(3.6) to (4.1) as follows:

(4.2a) v" +'= ", - \(i+/2 - .6-112)

^1

.fj+112 =2(f( '.) + f(vj+))

(4.2b) :k

+ 2 Ak= ZR+u, 2 ((gj* +Y3 I) -Q Q(" 1+1 /2  +I/2)'j+/2)

k 1

(4.2c) g+1/ 2  = ) 2((Q " ( + / 2 ) l- 1r"  1 /2 (1 -
niiill(0, 1k k- "k

- mnimm(0,i+1/2) " (1 + I,'j3 /2 )Sj. 1

(4.2d) gj/ = /2

kk
(4.2c) k ( .I - v4 +/25 +1/2 7 k

yj+1/2 {, 0. k2 \-- 4 I/2

\Ve take

( +2)I2+ , xI < I(4.3) Q(.) { , I±x

,nId Sk as follows:

(4.4.) -k = 71,(sk, S+k k~( kt +/ 9,2

(4.4b) ±j j+ 1/2 + 2.iz(aj+3 / - k k - Oj-1/2)

Here aj+1/2 is the k-th eigenvalue of I(Vj+ 1/2) corresxonling 1() the rid.-('ig ('vet)ok

1j+1/2, t)IId d j+1/2 l+lotes the 1'm)ll)l lt Of Aj+I/21, ? ,)+ I - vi ini the k-t ch'arac-

teristic field.

3 4.
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For (4.1) with 1 1l, (0.445,0.311,8.928)"', URa = (0.5, 0.1,1.4275)7', we perform the calcu-
lationis with 140 cells, h = 0.1 and 111 time steps under the CFL inmbers it = 0.9. In
calculations wve have used Roe's linearization and selected e = 0.2 for genuinely noulincar
fields; - = 0 for linearly dgeneratc fields. The numerical result is satisfactory.

Acknowledgment. The author would like to thank Dr. floig-Limig fl for his valuable
suggestions.
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STABILITY OF DIFFERENCE APPROXIMATIONS FOR
HYPERBOLIC INITIAL-BOUNDARY-VALUE PROBLEMS:

STATIONARY MODES'

ROBERT F. WARMING AND RICIIARD M. IIEAM

NASA Ames Research Center
Moffett Field, CA 9.1035

In this paper we consider the stability of finite-difference approximations to hy-

perbolic initial-boundary-value problems (IBVPs). For simplicity we restrict our
attention to the stability of approximations to the IBVP for the model hyperbolic
equation

du cOu... . 0 .... 0 x< L, t >10 (1)
0 t ax --

where c is a real constant. Oie must. specify initial dat.a at I : 0, and the IBVP is
well-posed if an analytical boundary COlditOlln is prescribed at x -- L

u(L,t) 7 g(f) for c>0. (2)

A semi-discrete approximation of (1) is obtained by dividing the spatial interval

into J subintervals of length Ax where JAx =- L., x = xj - jAx and approximating
the spatial derivative u, by a difference quotient. As a prototype approximation we
replace u., by a set ond-order accurate central difference quotient to obtain a system
of ordinary differential equations (ODEs)

di,_ c (, - ,, ,), j 1,2,. . I (3)

d- 2Ax

where I (t) - uj (h,|otes t be atpproximation to u (x, 1). ''le righit boundary (x = L)

is advanced by using the analytical boundary condi tion (2). \Ve assume that the
botndary condition is homogeneous, i.e., g(t) = 0, and for the SCrTIi-discrete problem
we write uj 0 0. In this abstact we consider only semi-discr(,e approximations,

but, in the final manuscript fully-discrete approximations will he included.
A complication in completing the approximation is the fact that generally more

boundary conditions are required for the difference approximation than are specified
for the partial differential equation. For example, if we apply (3) at the left boundary

(J = 0), then the stencil protrudes one point to the left. of the boundary. It is clear
that an additional numerical boundary scheme (NBS) is required. For example, at
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the left boundary (j = 0) we could change from a centered approximation to a
one-sided approximation of u, and use the following NBS:

duo _
= [1-au 2 + (I + 2a)ul - (1 + a)uol (4)

where a is a parameter. The system of ODEs (3) together with the analytical
boundary condition uj = 0 and the N13S (4) can be written in vector-matrix form
as

du(t) - Au(t) (5)
dt

where u is a J-component vector and A is a J x J matrix. The essential element in
the stability of the semi-discrete approximation (5) is the behavior of the solution
as the spatial mesh is refined. Consequently, one must consider an infinite sequence
of ODE systems of dimension J where J - cc as Ax -- 0.

Stability of a semi-discrete approximation with homogeneous boundary data
means that. there exists an estimate of the solution in terms of the initial data. For
example, the semi-discrete approximation represented by the sequence of ODE's (5)
is Lax-Richtmyer stable if there exists a constant K > 0 such that for any initial
condition u(0)

Ilu(t)J < K u(0)Jl (6)

for all J > 0, JAx = L and for all 1, 0 < t .7 with T fixed. Here the symbol 11 I1
denotes a norm.

Two methods for carrying out a stability analysis are the energy method and
the normal mode analysis. The normal mode analysis is an eigenvalue analysis. If
we look for a solution of (5) of the form u(t) = e"O, then we obtain Ao = so.
But this is just the eigenva'"!.-eigenvector problem for the matrix A where 0 is the
eigenvector and s is the eigenvalue. The practical problem of implementing tests
on the eigenvalues is that the normal mode analysis for a discrete hyperbolic IBVP
on a finite domain is, in general, analytically intractable.

The intractability can easily be demonstrated by the normal mode analysis of
the ODE system (5). The components Oy of the eigenvector and the normalized
eigenvalue g (Ax/c)s are given by

1

J- (-r 2 )(-1/K)j], = t- (7a,b)

where r is a root of the algebraic equation

q(ec) - (-= 2 ) 3 +'q(-1/;) 0. (7c)

The polynomial q('c) depends solely on the NBS. In particular, for the NBS (4) the
polynomial q(i) is

q()= (r. - 1)2(2arc-1). (8)

Since JAx = L, the degree of (7c) increases as the spatial mesh increment Ax
decreases. In general, one cannot solve for the roots of (7c) which accounts for the
analytic intractability of the normal mode analysis on a finite-domain.
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Au alternative but more complicated stability definition is used in tile theory
developed by (ustafsson, Kreiss, and Sundstr~m (GKS) 11. The advantage of the

GKS theory accrues from the fact that a finite-domain problem with two boundaries
is divided into a Cauchy problem and two quarter-plane problens each of which can
be analyzed separatel' by a normal mode analysis. The analogues of (7) for the
right-qiarter plane problein are

V 1K

where , is a root of
0. (9c)

This is the same polynomial q(c) that appears in (7c) and (8). The roots of (9c) are
easily found since q(K) is of low degree. Algebraic tests based on the roots of q(K)

and the corresponding eigenvalues . provide necessary and sufficient conditions for
GKS stability.

Since the Lax-lRicht my'er and (KS stability definitions differ, the connection be-
tween the normal mode analysis for the finite-domain problem and the normal mode

analysis for the quarter-plane problem is rather obscure. In a recent paper 13] we
derived asymptotic estimates of the eigenvalues of the finite-doirairi problem. These
estimates were used to relate the normal mode analysis of the finitc-domain problem
and the GKS quarter-plane analysis.

The notion of stability for the finite-domain problem is intimately associated with
the behavior of the eigenvalues A as the spatial mesh is refined, i.e., J -, o. Al-
though we cannot solve for the roots of (7c) analytically, we are primarily interested

in asymptotic estimates for large J. In order to derive the asymptotic estimates for
the roots of (7c), we assumed in 13] that particular roots can be identified for each

.1 and we write tc K- K(J). Furthermore, there is no loss of generality in assuming
that KIK(J)l < 1. We showed that the roots of the algebraic equation (7c) can be

divided into two distinct classes according to the asymptotic behavior of IKC(J)I j in
the limit J -- oc. For JK(J)j < 1 there are only two possibilites:

(I) lim I ,(J)! J = 0, (I1) lim [K(J)lj =-constant > 0. (10)
J-C.O J-oo

For roots in class (1), it is clear that (7c) reduces to the quarter-plane equation (9c)
as J -- oo. Consequently, a root in class (I) becomes a root of the quarter-plane

polynomial (9c) in the limit J -+ o.
In addition to (I) and (I1), there is a third class of roots

(X~l): lK(J)[ I .(1

If ]xj = 1 and is independent of J, then a r. root remains fixed on the unit circle

for all J. For this to happen it is obvious from (7c) that the polynomials q(rc) and

q(-1/c) must have a common factor. This common factor leads to identical roots

for both the quarter plane polynomial q(.c) and the finite-domain polynomial (7c).
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These roots are fixed on the unit circle and from (7b) one obtains !R(.) = 0 and
!a'(9) = fixed. Consequently, there is a stationary mode with r. independent of J.

An example with a stationary mode is NBS (4) for a = -1/2. The polynomial
(8) becomes

q(K-) = -(r - 1) 2 (K - 1), q(-1/c) -(K + 1) 2(r- 1)/K 3 , (a = -1/2) (12)

The polynomials q(,) and q(-1/,) have the common factor (Kc - 1)(,c 1 1) and
consequently, (7c) has the roots K, = ±1 independent of J for a - 1/2. From
(7b) 9 = 0 and this is a stationary mode. According to the GKS stability results,
a = -1/2 is the borderline case between stability (a > -1/2) and instability (a <
-1/2). This borderline case is GKS unstable. If there is a stationary mode for the
finite domain problem, the GKS perturbation test will always indicate the presence
of a GKS generalized eigenvalue.

The GKS quarter plane analysis cannot detect whether or not a particular mode
is stationary for the finite domain problem. The importance of a stationary mode
is the following. Gustafsson et al. [2] have proved that if the Cauchy stability
requirement of the GKS theory is replaced by a more stringent energy estimate, then
GKS stability implies Lax-Richtmyer stability in the L2 norm. There are known
examples showing that Lax-Richtmyer stability does not imply GKS stability. These
examples all involve what are called borderline cases. In fact, we show that they
are equivalent to the presence of a stationary mode for the finite-domain problem.
From our analysis, stationary modes are easy to detect since they occur if and only
if q(pc) and q(-I/K) have a common factor.

From the point of view of an eigenvalue analysis, a semi-discrete approximation
with a stationary mode must be treated separately since an), instability derives
not from an eigenvalue with a positive real part but from the algebraic growth (as
J -+ oo) of the norm of the solution. In this paper we examine in detail stationary
modes arising from various NBSs for both semi-discrete and fully discrete problems.
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AN ANALYSIS OF THE NUMERICAL SOLUTION OF
HYPERBOLIC PDES ON IRREGULAR GRIDS

B. Wendroff and A. B. White, Jr.

Los Alamos National Laboratory
Los Alamos, New Mexico U.S.A.

Extended Abstract

Partial differential equations (PDEs) are often approximated on irregular spatial grids. These
irregularities may be required to illuminate particular regions of interest or may be the result of
complementary calculations. In any case, many authors have noted that a difference scheme
defined on an irregular grid may have significantly larger truncation error than when defined on a
regular one. For example, the second divided difference approximates ' "(xi) correct to 0 (Ax 2) on
a uniform grid, to O (Ax) on an irregular one. Difference approximations of ordinary differential
equations on highly irregular grids have been examined in detail in Manteuffel and White [11 and
Kreiss et al. [2]. In many cases, this apparent loss of accuracy is an artifact of the classical error
analysis, and the discrete solution retains its accuracy even on very irregular grids.

Perhaps the simplest example of this effect for node-centered unknowns is a zeroth order,
conservative, upwind scheme, see Pike [3], applied to the scalar wave equation. On a product grid
(xi,tk), the difference approximation is

Lhii = +2c (1.1)
At (Axi+, + Axi_,/)

The truncation error associated with (1.1) is

Ax +, - ,i_,
Lhu -r=-c +,+-Ax u + 0 (A) (1.2)

&XI +2 + Axi_,h

For an irregular grid (e.g., a two-periodic grid: It, 2h, h, 2h. .. ), this difference scheme is
inconsistent unless rather stringent restrictions are placed on the mesh spacing. However, a
modified exact solution

a(X; t k) = i (x,,t k) + I c Ax +ht (xit k

2

has Ic = 0 (A). Thus, the usual error analysis yields

i*_ -U (xit ,t) = I- cAxi +jhL(xi,t ) + 0 (A); (1.3)
2

that is, the discrete solution remains first-order accurate (1.3) despite the zeroth order truncation
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The same basic behavior is observed in the numerical solution of the one-dimensional Lagrangian
gas dynamics equations

u,+t = -IX (1.4b)

el +pv, =0, (1.4c)

via a simple von Neumann- Richtmyer scheme. Here the velocity (u) is node centered (X, ,tk ), both
the specific volume (v) and internal energy (e) are cell-centered 4j1 +1,,k+ and p =-p(v~e). 'kCentered differences are used throughout; for exa~mple, Eq. (1 .4a) is approximated at xi+,:k) (see
Fig. 1.1),

-- +-/- - - ---A - - L

2. -i+ kV~ S 1 - 1 =

-9- -- --- --- ------ LkLk1

e e

Ik I
Iv v k-~i(k~~-T

-9--------------------9---- -+

Fig.= 1~ + - tgee rd

Equation (1.4c) is also approximated at (xi+,,,tk), Eq. (1 .4b) at (x,+ , tk

Thus, on a regular space-time mesh the truncation error is 0 (A 2) , but only first order on an irregular
grid,

N1.(v,u,e) E = 0 (A) .(1.5)

However, even in this nonlinear problem, a modified solution
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eAl = ei % + O (Atk- 2 + [IxA.,, 2)

can be constructed. such that the truncation error is second-order:

NhQ(,a, ) O (A2)

Thus, it can be shown that the first-order truncation error (1.5) does not imply a merely first-order
accurate discrete solution.

A generalized node-centered Lax-Wendroff scheme (Pike [3])

-k+ _ -k -_ui + I~ UII

At A-i+,h + Ai_,i

_c 2At L Lu+- -u-k f lk - i_ 0
Ax, +,/ + Axih Ax,, /A_j =0j

exhibits supraconvergence on irregular grids under certain restrictions. First, we require that

0<_5c At<P <1 (1.6)Axi ,q

The upper bound is familiar from stability considerations; the lower bound prevents At from getting
too small (e.g., At = 0 (Ax 2 )). Second, we require that the t-grid be uniform (actually quasiuniform
is probably sufficient). Numerical experiments will be presented to determine whether these
constraints are genuine or, once again, artifacts of the method of analysis.

REFERENCES

11] Manteuffel, Thomas, A., and Andrew B. White, Jr., The numerical solution of second-order
boundary value problems on.nonuniform meshes, MOC 47 (1986), 511-535.

[2] Kreiss, H.-O., Thomas A. Manteuffel, B. Swartz, B. Wendroff, and Andrew B. White, Jr.,
Supraconvergent schemes on irregular grids, MOC 47 (1986), 537-554.

[3] Pike, J., Grid adaptive algorithms for the solution of the Euler equations on irregular grids, JCP
71 (1987). 194-223.

343
£.-

$



The homogeneous homentropic compression or expansion-
a test case for analyzing SOD's operator splitting

WESTENBERGER H.
Lehr- und Forschungsgebiet Mechanik of the RWTH Aachen

D 5100 Aachen. Germany

SOD's operator splitting integrates a hyperbolic conservation law with a source term
by splitting the source term from the divergence part and by integrating both parts
separately

ut + (E(U))r Q(U.r)

t + (E(U))rQ Ut = Q(U.r)

solution operator H solution operator S

This splitting technique can be understood as a special integration of the conser-
vation law with a source term over a region G which leads to

Um,n+I 
= 

Um,n - ) (gm,. n-gm-) ,n) + AtQrnn .

Three variants of the splitting will be considered

S o H { .n }m,N

{ Ym.n+l ImN S2oHoS "2 ( YM.r ImcN
IS + H -I (1-,,rn }mn9-i

There are two special aspects of splitting to be analyzed

0 The choice of dependent variables

The splitting into a homogeneous part and a source term depends on the chosen
dependent variables and is therefore not unique. The choice influences the quality of
the solution.

Example : gasdynamic equations

dependent variables :() p. m. e ) or (..) { pA. mA. eA

p - density, m - momentum, e - total energy, a - cross-section.
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Although formulation (.) gives reasonable results with all three variants, formulation
(** ) can only be combined with variant 3.

0 The source term and entropy behaviour

The time integration of the source tern does not pay attention to the second law of

thermodynamics. Therefore the physical entropy can descend (Figure I).

entropy _ns
a) Rm b)

entropy rise by a
shock of strength 3.7

-0.2 -0.4

-0.3 0 0.3 t-0.3 0 0.3 vr r

Fioure 1 Entropy descent by the time integration of the source term

a) for formulation ( ,

b) for formulation (..)

Theorem : A solution of the quasi-one-dimensional gasdynamic equations for variable

cross-section A(r) has to be found in IR+x [0, T ) with A(O) ( o, A i C2

entropy s- const., p=p(t), velocity v(0. t) 0. v(r 0 , 0) = vo. Such a

so!ution only exists for

A (r) = T r8 , >O, Y O 0

and for 0 t > -1 it has the form
r,

V, ro

t v- + t r.
ro

To use this analytic solution for a numerical test we choose the initial conditions

A(r) = r', y = 2 ( spherical symmetry

p(r,0) = P0,

v(r, r v = - . x - adiabatic exponent, a - sound speed.

v(0.t) = v(1, t) = 0.
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This leads to a region of undistijrbed homogeneous compression which is separated
from a rarefaction wave by the characteristic (Figure 2)

C t) = 1 ( A . z lv t - 1] + 1)I+v t EV o
=(x +1) -

tshock

fformation

piston

rarefaction path

oowave
centre hmgn~or

Ii c o m p r e s s io n

r

Figure 2 : Wave pattern for the homogeneous compression with a suddenly fixed
piston

The GODUNO V-method shows very good agreement of the numerical results with
the analytic solution. An entropy drop can be found although it is dominated by the
entropy rise at the fixed piston ( Figure 3 ).

The F andom-choice method has been treated statistically over several numerical
runs. The resulting expectation value and the variance show some oscillations near
the centre of symmetry. This agrees with the statement of COLELLA that the com-
bination of the random-choice method with operator splitting diminishes accuracy.
In spite of this no entropy rise can be found near the fixed piston ( Figure 4 ).
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b shock b Ishock
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c- omoreneous compression

centre piston centre piston

sok entropy rise c )shock

_j; 0.68 entropy drop 0.p4to

-0.1 re tr -0.4

rcgntre

Figure 3 :The homogeneous compression with a Figure 4 The homogeneous compression with a

suddenly fixed piston with the GOOUNOV- suddenly fixed piston with the random-choice

method ( CFL-number: 0.95 ) method ( CFL-nu.-nber: 0.95)
a I space-time pressure profile ( variant 2 a a Ispace-time pressure profile ( variant I

b I sobars ( variant 2 * ) b I sobars ( variant 1 *)
c Ispace-time entropy profile (variant 3 9 c )space-time entropy profile Cvariant 1 *
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APPLICATIONS OF THE PIECEWISE-PARABOLIC METHOD (PPM)
TO THE

STUDY OF UNSTABLE FLUID FLOW

Paul R. Woodward

University of Minnesota

The Piecewise-Parabolic Method (PPM) [1-4] is a differ-
ence scheme for solving the Euler equations of inviscid fluid
flow. PPM is built upon the ideas of Godunov's scheme 15] and
its earliest higher-order extension, MUSCL 16,7]. PPM was
originally designed to attack transient flow problems involv-
ing strong, discontinuous, nonlinear waves. In recent years
PPM has been extended to treat milder problems such as
compressible convection in stars and terrestrial thunder-
storms. In these problems discontinuities also arise, and PPM
delivers the same high resolving power which motivated its
earlier use in strong shock problems. Applications of both
"strong" and "weak" formulations of PPM will be presented, and
the merits of the numerical approach as well as the physics of
the applications themselves will be discussed. These applica-
tions are part of a larger program of investigation of un-
stable fluid flow. The computed flows are visualized with
high-speed interactive color graphics displays, and the
results will be shown as video movies.

In the "strong" category of applications, studies of
supersonic slip surface instabilities will be presented.
These studies were inspired by a larger study of the propaga-
tion and stability of gaseous jets, most recently in colla-
boration with K.-H. Winkler (Los Alamos) and N.J. Zabusky
(Pittsburgh). The earliest PPM simulations of slip surface
instability showed nonlinear unstable modes not expected from
linearized perturbation analysis. This work inspired Artola
and Majda at Princeton to extend this analytic theory to the
weakly nonlinear regime. They confirmed the existence of the
nonlinear modes and gave quantitative formulae for angles and
propagation speeds of resonant interactions between a super-
sonic slip surface and incident sound wave trains. New PPM
simulations which correspond more closely to the context of
this analytic work have been performed in collaboration with
Jeffrey Pedelty at Minnesota. These display interesting non-
linear effects, such as coupling between the various nonlinear
modes and broadening of the resonance for strong perturba-
tions. Video movies of these simulations will be presented,
and their importance for the understanding of jet stability
will be discussed.

In the "weak" category of applications, studies of
compressible convection will be presented. This work has been
performed in collaboartion with David Porter at Minnesota.
These studies are aimed at an understanding of convective heat
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transport iri the outer layers of stars like the sun. For such
stars the regime of interest is one of extremely low thermal
conductivity and even more extremely low viscosiCy (i.e. high
Reynolds numbers and low Prandtl numbers). Compressiblity is
also very important, because the unstable layers span many
density and pressure scale heights. In the PPM simulations we
attempt to treat these features of the flows, although the
magnetic fields, rotation, and three-dimensional spherical
geometry of the stellar flows are not treated. Cur simula-
tions of compressible convection between rigid, friction-free
plates in 2-D Cartesian geometry are surely quite unlike con-
vection in stars in several respects. Nevertheless, these
simulations give important information on the relationship
between the predominant sizes of convective eddies and the lo-
cal pressure and density scale heights in the fluid. We have
begun to extend our work to three dimensions, but in this case
the demands on the resolution of both the difference scheme
and the computational grid add to make the simulations very
costly and extremely difficult to carry out and display. The
discussion here will focus on the work in 2-D, using video
movies to illustrate the approach to a statistically steady
spectrum of convective eddy sizes.
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Global existence of solutions for noncharacteristic mixed
problems to nonlinear symmetric hyperbolic systems of the

first order with dissipation

W.M. Zajqczkowski, Warsaw

Institute of Fundamental Technological Research

We consider the following initial boundary value problem

n
E(t,x,u)ut + E Ai(t,x,u)ux + B(t,x,u)u = F(t,x)

i-t x in f1x[O,T],
(1)= = uO(x) in fl

M(t'x1'u)u1aO = g(t'x') on 3Qx[O,TI,

where 9 is a bounded domain, x=(x1 1 ... ,xn) E 0 C IRn X' E aQ

u=(Uig***tum) E G C IRm, G is an open subset of the physical
state space 11m, because physical quantities such as the den-
sity or temperature should always be positive, u, E G. CC G,
E(t,x,u), A1 (t#,U), .4., An (tx,u), B(tox,u) are 2real mxm
matrices, EA 1 D...DAn are symmetric, Euu Z acu , a0 is a

positive constant,

M(t,x',u) E CL ~(t,x,u)y+(t,xh,u)y+(t,x',u) +
UV m

+ E B t,UY(t,x,u)y-(t,x', u~
Pat V=L+1 115 uP tx'u

where y~r iit. ,Y-, Vmt+I,.**,m, are eigenvectors to

the matrix -Aef - -(Aln1-t...+A~n n) (H~ is the unit outward
vector normal to the boundary) ,corresponding to the positive

(X1, j=I...L)and negative (X-, vot+I, ...,M) eigenvalues,
respectively.

We assume also that the eigenvalues are disjoined from
zero, so min min IXI a cO 0, c, is a constant, and

~flxOT]x OTx pfX0TX

max l-1: max isc

39x(I,..., U aflx[OT~xG VV

max max X+I S c'1
vEE+I .. ,m} ..X(, JX 3n [ ,T4

3X- S~ C, C) )-6



Finally we assume the condition of dissipation

(2) Bu-u a 80 u 2 , 8o > 0.

Under the assumption the following result has been
proved

Theorem i Ht-i
Let F E 1t(Qxt0,tl), tF E L.(O,t;H (a)), i=0,...,t,

g E H (ax[O,t]), t > + 1, u0 E H (Q), M E C2

EAJ,...,An,B E C (Qx[O,tjxG), M E C (jx[0,t~xG),
t : T E R and F,g,u 0 ,E,A ,...,A ,B,M rust be sufficiently

+ I n
small in the corresponding norms.

Then there exists a unique global in time solution to
the problem (1), (2) such that

u. E H (ax[o,t]) n Ht (ax[0,t]) and alu E

i=0, . . ., t.
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RIEMANN PROBLEM FOR GASDYNAMIC COMBUSTION

TONG ZHANG
Institute of Mathematics, Academia Sinica, Beijing

Yuxi Zheng
Department of Mathematics, University of California at Berkeley

The simplest complete system for the flow of combustible gas with an infinite rate of reaction
is as follows:

Ut + pX , tt - uZ = 0, Et + (pu). = 0,

E- u'/2 + e + q, e = prf('y -),

chemical binding energy satisfies

q(x,O) sup T(z,r) _ Ti (ignition temperature)q~zt) i0<,r<t
10 otherwise,

T =pr/R, R > O,

where -y,R and Ti are constants and u,p,r and q are unknowns. q has only two values: q = 0
for the burnt gas and q = q0 > 0 for the unburnt gas.

The Riemann problem is as follows:
(u,r,p,q),=o = (u+,r+,,+,q'), (p >0).

We obtained existence and uniqueness constructively for arbitrary Riemann data under
the following restrictions: the solutions are selfsimilar and piecewise smooth; the Lax entropy
condition is satisfied at the discontinuity points except at the front sides of deflagration waves
where the temperatures are assumed to be the ignition point; the number of detonation waves
in the solutions is as small as possible; furthermore, the number of times of oscillations of
temperature around the ignition point is also as small as possible; and last, the number of
deflagration waves is as large as possible. The last three principles are called global entropy
condition, without which the number or solutions may be nine at most.

Solutions consist of shocks, centered rarefaction waves, detonations, deflagrations, Chap-
mann-Jouguet detonations, Chapmann-Jouguet deflagrations and contact discontinui ties. There
are thirty-six kinds of configurations in all.

Using the Riemann problem, we analyzed the overtaking of shocks and combustion waves:
a shock always accelerates detonation, whereas it transforms deflagration into detonation when
it is strong enough. Transition from deflagration to detonation in the ignition problem is also
investigated.

(to appear in J.D.E.)
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SOME RESULTS ON STABILITY AND CONVERGENCE OF DIT F'FRP:NCF SCHEMIS

FOR QUASILINEAR HYPERBOLIC INITIAL-BOUNDARY-VA1,TJE PROBLEMS

You-] an Zhu

The Computing Center, Academia Sinica

Beijing, China

In the seventies [1,2 ] we obtained some rcsults on stability of

difference schemes for initial-boundary-value problcms of linear

diagonalized hyperbolic systems in two independent variables. Later 
3

these results were extended to gencral linear hyperbolic systems

with "moving boundaries" and some convergence theorems were estab-

lisied. In (4], we completed some proofs of 'global' convergence

of difference schemes for general quasilinear hyperbolic initial-

boundary-value problems with moving boundaries.

In this paper we would like to introduce our main result

briefly. The result can be described as follows.

Let us consider the following initial-boundary-value problem

for quasilinear hyperbolic systems in two independent variables.

1. A quasilinear hyperbolic system

+ A(U,x,t) bx = F(U,x,t) (1.1)

is given in L regions: x_ 1 (t) < x ( xA(t), 0<t<T,

.Q= 1,2,..., L.

2. On external boundaries and internal boundaries x = xe(t),

I = 0,1,...,L, a number of nonlinear boundary conditions

are prescribed:
B 0oUoXoZo0t) = 0,

B+-_- of 1,2, L 1, (1.2)

BL (L, xL,ZL, t) = 0,

where

z _ = I . L. (1.3)
3dt
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3. At t = 0 initial values are specified:

( x,O) = D- (x), for x- 1 (0)< x <x P 01Qp2.. LX c , ,0 o = 0, .. ( .4
x() = c0 , , z1 (0) = ci,' s = 0,1,...,L. (1.4)

It is required to determine U in the L regions and xq(t),

Yz(t) for 0<t< T, H=0'I'''''L" Here 0f, F'1 D are N1-dimensional

vectors, A - an N1 X N1 matrix, Be - -dimensional vectors,

c0,. and cl,g are scalars and 1J = U0(t) = lrn 0(x,t).
x->xv(t)±O

We suppose that in every region: x1_1(t)<x<xe(t), O<t<T,

U and ils first derivatives are Lipschitz continuous with respect

to x and t. Obviously, if we take all the discontinuity lines

and the first order weak-discontinuity lines (on which the first

derivatives are discontinuous) as internal boundaries, this

assumption can be satisfied. We further assume that in every

region, the second derivatives of 0 are piecewise smooth. Clearly,

this assumption usually holds. For this case, the truncation

error in L2 norm will really be 0(At') even for the problems

with discontinuous solution if the second order schemes in 1I]

and (2] are adopted. We have proved that when the second order

schemes in [1] and (2] are used and when the above two assumptions

and a .very weak assumption about boundary conditions (1,2) are

satisfied, the approximate solution of 0 will converge to the

exact solution with a convergence rate of 8t
2 in L2 norm and

the errors of the approximate solutions of x (t) are O(dt 2 ),

no matter whether or not there exist some discontinuities, such

as shocks, contact discontinuities.
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Consider the iit ial-lbounda vauv problem

• + A ) y Y(1,)) = n(,) (1)
at Ox

fory(, E R", 0< r < 1 0 < t < T. A and D are n x i roal matrices. Without loss of
generality A may he taken to be diagonal

-( A- 0 ) A - d ia-g (A -\ -I , A 2 ....I A ?'

7 A+ A= diag(A++I ..... \4-) > 0

lWell-posed linear hoogeneolis bomidary data can always b)e wril en as
4- so SO

S 0Y) (2)

SI +(,t)

where vector .1 = q+ ] is the partition of y corres)on(lin -g to tli, partition of A, So and
S, are matrices of dimensions (n - r) x r and r x (n - r), resl)ectively. For a positive d(efinite
(liagonal it x n miatrix G partitioned in the nmanner of A, the Lapiimnov functional is defined
to be

E() II?11k = Y r
0

The time rate of cluuige of the Lyapuntov functional is given by

dE dE+ dEi

St (it- d
where

dEb T 5= y )(GA _ + S G+A+So)iSdt Y01 o r

y'+A(G+A + STG-A-S1 )y,] (1 ,t) (G +j

dE
dt 2 f yGD y dx

0

T
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Definition 1.

The initial-boundiry wdue iproblcn (1) (2) is interior-stalle (r,,sp. boundary-stable) if
there is a positive definite diagonal matrix G, independevit of initial conditions, such that
the inequality Ei(t,) _ Ei(,2 ) (resp. El,(,,) > Eb(t2)) holds for every t < t 2.

)eIlliitioi 2.
The matrix D is syminctrizable if there exists a diagonal positive (finite matrix L that
synimetrizes D, i.e. LD = DTL.

Theorem 1.

Assune that the matrix D is symmetrizalde. Then problem (1) (2) is interior-stable if and
only if all eigenvalues of D are less or equal to zero.

Theoremin 2.

If prolem (1) (2) is boundary-stable then I1S, Soil !5 1 and IIS(,S, 1 where 11 - denotes
the matrix Hilbert norm.

Sketch of the proof:
If rI < 0 for every initial condition then

?-T(G-A- + S'G+ASo)y 0 ()

y+T(-G+j+ - Sf G-A-S)y+ :_ 0

Hence we have the following inequalities

?I-TI(S, So )7(_G- A-) SSo - (-G-A-) y- : K 0

y+T[(sosI)7" G+A+SoS - G+A+] y+ < 0

If we now take

-G-A- = Irx

G+A+ = (n-r)x(n--)

we finally obtain

IlS Soll <_ 1 ilSoSll <_ 1 •

Theorem 3.

Problem (1) (2) is boundary-stable if there exists g > 0 such that I1-S11 < g and S, ! g -
Sketch of the proof:
If ISo11 g- -/ga+ IISan I g+ +/- then

Y-_TSOT_ S - < - y+TSS ,Y+ < y+
y-- - 9+ y+7Ty+ Y

for every y- and y. If we now take G-A- -1 and G+A+ g+J we finally obtain
dEb/dt <01
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Theorem 4.
Assume that the matrices SoS 1 and SSo are symmetrizable. Then problem (1) (2) is
boundary-stable if and only if 1 So S, < 1 or equivalently, 11515011 1.
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